Skip to main content

The Roles of Functional MRI in MR-Guided Neurosurgery in a Combined 1.5 Tesla MR-Operating Room

  • Conference paper
Intraoperative Imaging in Neurosurgery

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 85))

Abstract

Background and Purpose. During MR-guided neurosurgical procedures performed in a combined 1.5 Tesla MR-operating room (MR-OR), we have successfully implemented and validated a functional MRI (fMRI) scheme for efficiently localizing eloquent functional areas and assessing their proximity to a lesion volume immediately prior to the craniotomy.

Methods. The fMRI examination consists of a dynamical blood oxygenation level dependent (BOLD) MR imaging technique and a task paradigm that is designed to activate the brain area of interest. The functional imaging technique was based on gradientecho (GE) echo-planar imaging (EPI) (TRITE = 2000-3000/4050 msec). The motor task paradigm involves a periodic movement task, such as alternating between thumb and the other four fingers as a finger-tapping task, while the language involved a covert repeat of a series of words given as a task stimulus. While patient is performing the task, a dynamical fMRI was performed concurrently covering the volume of interest every 2 or 3 sec. Also, we have used a temporal series averaging (TSA) method for correcting the background drift in the raw fMRI signal, and developed a scheme for presenting fMRI results to neurosurgeons in an intuitive 3dimensional volume-rendered display format.

Results. By using the fMRI scheme, we have successfully performed sixteen fMRI examinations immediately prior to neurosurgery in the combined MR-OR on the same surgical table to localize various eloquent functional areas of interests. TSA was successful in reducing the background drift in the fMRI time course data, and the 3-dimensional volume-rendered display was proven effective in presenting the resulting brain activations to neurosurgeons. More importantly, in three representative cases (one biopsy and two tumor resections) presented, the information provided by fMRI have indeed contributed significantly in making the optimal surgical decisions prior to craniotomy.

Conclusions. Intra-operative fMRI can be an indispensable tool for determining the location of a neighboring eloquent functional area of concern in reference to a targeted lesion. Information provided by fMRI has helped in improving the outcome and clinician confidence of all surgeries performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ogawa S, Lee TM, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14: 68–78

    Article  PubMed  CAS  Google Scholar 

  2. Thulborn KR, Waterton JC, Matthews PM, Radda GK (1982) Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Bichem Biophys Acta 714: 265–270

    CAS  Google Scholar 

  3. Belliveau J, Rosen B, Kantor H, Rzedzian R, Kennedy D, McKinstry R, Vevea J, Cohen M, Pykett I, Brady T (1990) Functional cerebral imaging by susceptibility-contrast NMR. Magn Reson Med 14: 538–546

    Article  PubMed  CAS  Google Scholar 

  4. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87: 9868–9872

    Article  CAS  Google Scholar 

  5. Turner R, Bihan DL, Moonen CTW, Despres D, Frank J (1991) Echo-planar time course MRI of cat brain oxygenation changes. Magn Reson Med 22: 156–166

    Article  Google Scholar 

  6. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89: 5951–5955

    Article  PubMed  CAS  Google Scholar 

  7. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng HM, Brady TJ, Rosen BR (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89: 5675–5679

    Article  CAS  Google Scholar 

  8. Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25: 390–397

    Article  PubMed  CAS  Google Scholar 

  9. Kim SG, Ashe J, Hendrich K, Ellermann JM, Merkle H, Ugurbil K, Georgopoulos AP (1993) Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 261: 615–617

    Article  PubMed  CAS  Google Scholar 

  10. Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil K (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. Biophys J 64(3): 803–812

    Article  PubMed  CAS  Google Scholar 

  11. Roy C, Sherrington C (1890) On the regulation of the blood supply of the brain. J Physiol (London) 11: 85–108

    CAS  Google Scholar 

  12. Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation inhumna subjects. Proc Natl Acad Sci USA 83: 1140–1144

    Article  PubMed  CAS  Google Scholar 

  13. Raichle ME (1998) Behind the scenes of functional brain imaging: a historical and physiological perspective. Proc Natl Acad Sci USA 95: 765–772

    Article  CAS  Google Scholar 

  14. Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS (1993) Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med 30: 161–173

    Article  PubMed  CAS  Google Scholar 

  15. Cox RW, Jesmanowicz A, Hyde JS (1995) Real-time functional magnetic resonance imaging. Magn Reson Med 33: 230–236

    Article  PubMed  CAS  Google Scholar 

  16. Friston KJ, Holmes AP, Poline J-B, Grasby PJ, Williams SCR, Frackowiak RSJ, Turner R (1995) Analysis of fMRI time-series revisited. Neuroimage 2: 45–53

    Article  PubMed  CAS  Google Scholar 

  17. Atlas SW, Howard II RS, Maldijian J, Alsop D, Detre JA, Listerud J, D’Esposito M, Judy KD, Zager E, Stecker M (1996) Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: findings and implications for clinical management. Neurosurgery 38(2): 329–338

    Article  PubMed  CAS  Google Scholar 

  18. Haglund MM, Berger MS, Schamseldin M, Lettich E, Ojemann GA (1995) Cortical localization of temporal lobe language sites in patients with gliomas. Neurosurgery 34(4): 567–576

    Article  Google Scholar 

  19. Puce AG, Constable T, Luby ML, Eng M, McCarthy G, Nobre AC, Spencer DD, Gore JC, Allison T (1995) Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J Neurosurg 83: 262–270

    PubMed  CAS  Google Scholar 

  20. Hall WA, Liu H, Martin AJ, Pozza CH, Maxwell RE, Truwit CL (2000) The safety, efficacy, and functionality of high field strength interventional magnetic resonance imaging for neurosurgery, Neursurgery 46: 632–642

    Article  CAS  Google Scholar 

  21. Liu H, Hall WA, Martin AJ, Maxwell RE, Truwit CL (2000) MR-guided and MR-monitored neurosurgical procedures at 1.5 T. J Comput Assist Tomogr 24: 909–918

    Article  PubMed  CAS  Google Scholar 

  22. Mugler III JP, Brookeman JR (1990) Three dimensional magnetization prepared rapid gradient echo imaging (3D MP RAGE). Magn Reson Med 15: 152–157

    Article  PubMed  Google Scholar 

  23. Xiong J, Gao JH, Lancaster JL, Fox PT (1995) Clustered pixels analysis for functional MRI activation studies of the human brain. Hum Brain Map 3: 287–301

    Article  Google Scholar 

  24. Liu H, Hall WA, Martin AJ, Truwit CL (2000) A new MR based needle trajectory guidance scheme for neurobiopsy at 1.5 T. Proc Soc Magn Reson Med 3: 1327–1327

    Google Scholar 

  25. Ellermann J, Flament D, Kim SG, Fu QG, Merkle H, Ugurbil K (1994) Spatial patterns of functional activation of the cerebellum investigated using high field (4 T) MRI. NMR in Biomed 7: 63–68

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag/Wien

About this paper

Cite this paper

Liu, H., Hall, W.A., Truwit, C.L. (2003). The Roles of Functional MRI in MR-Guided Neurosurgery in a Combined 1.5 Tesla MR-Operating Room. In: Bernays, R.L., Imhof, HG., Yonekawa, Y. (eds) Intraoperative Imaging in Neurosurgery. Acta Neurochirurgica Supplements, vol 85. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6043-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6043-5_18

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83835-8

  • Online ISBN: 978-3-7091-6043-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics