Skip to main content

Abstract

Enclosed in shells with ventral and dorsal valves, extant brachiopods (meaning “arm” and “foot”) are classified into three major subphyla: the Rhynchonelliformea, the Linguliformea, and the Craniiformea. Rhynchonelliform brachiopods encompass what were once referred to as the “articulate” brachiopods, so named for the mineralized hinge that connects the calcite valves of their shells. No such hinge is found in members of the other two subphyla, rather their valves are held together only by various muscles and connective tissues. Craniiform brachiopods (e.g., Novocrania) also have calcitic shells, but the shells of linguliform brachiopods (such as the lingulid Glottidia and the discinid Discinisca) are composed of apatite, a phosphatic mineral, with an outer layer of chitin. Most brachiopod morphotypes have a smaller dorsal and a larger ventral valve, the latter of which often bears a muscular or rigid attachment structure called the pedicle. Rhynchonelliform brachiopods are often attached to hard substrata by the rigid pedicle with their ventral valves oriented upward. The shells of linguliform brachiopods such as Glottidia and Lingula generally have equally sized valves and their pedicles are long, muscular structures modified for burrowing into soft sediments. Craniiform brachiopods have lost the pedicle and cement directly to hard substrates.

Chapter vignette artwork by Brigitte Baldrian.© Brigitte Baldrian and Andreas Wanninger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altenburger A, Wanninger A (2009) Comparative larval myogenesis and adult myoanatomy of the rhynchonelliform (articulate) brachiopods Argyrotheca cordata, A. cistellula, and Terebratalia transversa. Front Zool 6:3

    Article  PubMed Central  PubMed  Google Scholar 

  • Altenburger A, Martinez P, Wanninger A (2011) Homeobox gene expression in Brachiopoda: the role of Not and Cdx in bodyplan patterning, neurogenesis, and germ layer specification. Gene Expr Patterns 11:427–436

    Article  CAS  PubMed  Google Scholar 

  • Altenburger A, Wanninger A, Holmer LE (2013) Metamorphosis in Craniiformea revisited: Novocrania anomala shows delayed development of the ventral valve. Zoomorphology 132:379–387

    Article  Google Scholar 

  • Arendt D, Tessmar K, de Campos-Baptista MIM, Dorresteijn A, Wittbrodt J (2002) Development of pigment-cup eyes in the polychaete Platynereis dumerilii and evolutionary conservation of larval eyes in Bilateria. Development 129:1143–1154

    CAS  PubMed  Google Scholar 

  • Bitner MA (2006) Recent brachiopods from the Fiji and Wallis and Futuna Islands, Southwest Pacific. Mém Muséum Nat D’Histoire Nat 193:15–32

    Google Scholar 

  • Byrne M, Nakajima Y, Chee FC, Burke RD (2007) Apical organs in echinoderm larvae: insights into larval evolution in the Ambulacraria. Evol Dev 9:432–445

    Article  PubMed  Google Scholar 

  • Chuang SH (1977) Larval development in Discinisca (inarticulate brachiopod). Am Zool 17:39–53

    Google Scholar 

  • Chuang SH (1996) The embryonic, larval, and early postlarval development of the terebratellid brachiopod Calloria inconspicua (Sowerby). J R Soc N Z 26:119–137

    Article  Google Scholar 

  • Cohen BL (2000) Monophyly of brachiopods and phoronids: reconciliation of molecular evidence with Linnaean classification (the subphylum Phoroniformea nov.). Proc Biol Sci 267:225–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen BL (2013) Rerooting the rDNA gene tree reveals phoronids to be “brachiopods without shells”; dangers of wide taxon samples in metazoan phylogenetics (Phoronida; Brachiopoda). Zool J Linn Soc 167:82–92

    Article  Google Scholar 

  • Cohen BL, Bitner MA (2013) Molecular phylogeny of rhynchonellide articulate brachiopods (Brachiopoda, Rhynchonellida). J Paleontol 87:211–216

    Article  Google Scholar 

  • Cohen B, Weydmann A (2005) Molecular evidence that phoronids are a subtaxon of brachiopods (Brachiopoda: Phoronata) and that genetic divergence of metazoan phyla began long before the early Cambrian. Org Divers Evol 5:253–273

    Article  Google Scholar 

  • Cohen BL, Gawthrop A, Cavalier ST (1998) Molecular phylogeny of brachiopods and phoronids based on nuclear–encoded small subunit ribosomal RNA gene sequences. Philos Trans Roy Soc Lond B: Biol Sci 353:2039–2061

    Article  CAS  Google Scholar 

  • Cohen BL, Holmer LE, Lüter C (2003) The brachiopod fold: a neglected body plan hypothesis. Palaeontology 46:59–65

    Article  Google Scholar 

  • Conklin EG (1902) The embryology of a brachiopod, Terebratulina septentrionalis Couthouy. Proc Am Philos Soc 41:41–76

    Google Scholar 

  • Culter JK, Simon JL (1987) Sex ratios and the occurrence of hermaphrodites in the inarticulate brachiopod, Glottidia pyramidata (Stimpson) in Tampa Bay, Florida. Bull Mar Sci 40:193–197

    Google Scholar 

  • D’Hondt JL, Franzén Å (2001) Observations on embryological and larval stages of Macandrevia cranium (Müller, 1776) (Brachiopoda, Articulata). Invertebr Reprod Dev 40:153–161

    Article  Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sørensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749

    Article  CAS  PubMed  Google Scholar 

  • Emig CC (1992) Functional disposition of the lophophore in living Brachiopoda. Lethaia 25:291–302

    Article  Google Scholar 

  • Emig CC (1997) Biogeography of inarticulated brachio-pods. In: Kaelser RL (ed) Treatise on invertebrate paleontology, Pt. H, Revised. The Geological Society of America and The University of Kansas, Boulder and Lawrence, pp 497–502

    Google Scholar 

  • Emig CC, Bitner MA, Álvarez F (2013) Phylum Brachiopoda. In: Zhang ZQ (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness (Addenda 2013). Magnolia Press, Auckland, NZ, pp. 75–78, Zootaxa 3703

    Google Scholar 

  • Ferrier DEK (2012) Evolutionary crossroads in developmental biology: annelids. Development 139:2643–2653

    Article  CAS  PubMed  Google Scholar 

  • Freeman G (1995) Regional specification during embryogenesis in the inarticulate brachiopod Glottidia. Dev Biol 172:15–36

    Article  CAS  PubMed  Google Scholar 

  • Freeman G (1999) Regional specification during embryogenesis in the inarticulate brachiopod Discinisca. Dev Biol 209:321–339

    Article  CAS  PubMed  Google Scholar 

  • Freeman G (2000) Regional Specification during embryogenesis in the craniiform brachiopod Crania anomala. Dev Biol 227:219–238

    Article  CAS  PubMed  Google Scholar 

  • Freeman G (2003) Regional specification during embryogenesis in rhynchonelliform brachiopods. Dev Biol 261:268–287

    Article  CAS  PubMed  Google Scholar 

  • Fröbius AC, Seaver EC (2006) Capitella sp. I homeobrain-like, the first lophotrochozoan member of a novel paired-like homeobox gene family. Gene Expr Patterns 6:985–991

    Google Scholar 

  • Gustus RM, Cloney RA (1972) Ultrastructural similarities between setae of brachiopods and polychaetes. Acta Zool 53:229–233

    Article  Google Scholar 

  • Halanych KM, Bacheller JD, Aguinaldo AM, Liva SM, Hillis DM, Lake JA (1995) Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267:1641–1643

    Article  CAS  PubMed  Google Scholar 

  • Hausdorf B, Helmkampf M, Nesnidal MP, Bruchhaus I (2010) Phylogenetic relationships within the lophophorate lineages (Ectoprocta, Brachiopoda and Phoronida). Mol Phylogenet Evol 55:1121–1127

    Article  PubMed  Google Scholar 

  • Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, Edgecombe GD, Martinez P, Baguna J, Bailly X, Jondelius U, Wiens M, Muller WEG, Seaver E, Wheeler WC, Martindale MQ, Giribet G, Dunn CW (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc R Soc B Biol Sci 276:4261–4270

    Article  Google Scholar 

  • Hill RE, Favor J, Hogan BL, Ton CC, Saunders GF, Hanson IM, Prosser J, Jordan T, Hastie ND, van Heyningen V (1991) Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 354:522–525

    Article  CAS  PubMed  Google Scholar 

  • Kaulfuss A, Seidel R, Lüter C (2013) Linking micromorphism, brooding, and hermaphroditism in brachiopods: insights from caribbean Argyrotheca (Brachiopoda). J Morphol 274:361–376

    Article  PubMed  Google Scholar 

  • LaBarbera M (1981) Water flow patterns in and around three species of articulate brachiopods. J Exp Mar Biol Ecol 55:185–206

    Article  Google Scholar 

  • Larsson CM, Skovsted CB, Brock GA, Balthasar U, Topper TP, Holmer LE (2013) Paterimitra pyramidalis from South Australia: scleritome, shell structure and evolution of a lower Cambrian stem group brachiopod. Palaeontology 57:417–446

    Article  Google Scholar 

  • Long JA, Stricker SA (1991) Brachiopoda. In: Giese AC, Pearse JS, Pearse V (eds) Reproduction of marine invertebrates, vol VI, Echinoderms and Lophophorates Pacific Grove. The Boxwood Press, CA, pp 47–84

    Google Scholar 

  • Lüter C (2000) Ultrastructure of larval and adult setae of Brachiopoda. Zool Anz 239:75–90

    Google Scholar 

  • Mallatt J, Craig CW, Yoder MJ (2012) Nearly complete rRNA genes from 371 Animalia: updated structure-based alignment and detailed phylogenetic analysis. Mol Phylogenet Evol 64:603–617

    Article  CAS  PubMed  Google Scholar 

  • Martín-Durán JM, Janssen R, Wennberg S, Budd GE, Hejnol A (2012) Deuterostomic development in the protostome Priapulus caudatus. Curr Biol 22:2161–2166

    Article  PubMed  Google Scholar 

  • Meyer NP, Seaver EC (2009) Neurogenesis in an annelid: characterization of brain neural precursors in the polychaete Capitella sp. I. Dev Biol 335:237–252

    Article  CAS  PubMed  Google Scholar 

  • Murdock DJE, Bengtson S, Marone F, Greenwood JM, Donoghue PCJ (2014) Evaluating scenarios for the evolutionary assembly of the brachiopod body plan. Evol Dev 16:13–24

    Article  PubMed  Google Scholar 

  • Nederbragt A, te Welscher P, van den Driesche S, van Loon AX, Dictus W (2002) Novel and conserved roles for orthodenticle/otx and orthopedia/otp orthologs in the gastropod mollusc Patella vulgata. Dev Genes Evol 212:330–337

    Article  CAS  PubMed  Google Scholar 

  • Nesnidal MP, Helmkampf M, Meyer A, Witek A, Bruchhaus I, Ebersberger I, Hankeln T, Lieb B, Struck TH, Hausdorf B (2013) New phylogenomic data support the monophyly of Lophophorata and an ectoproct-phoronid clade and indicate that Polyzoa and Kryptrochozoa are caused by systematic bias. BMC Evol Biol 13:253

    Article  PubMed Central  PubMed  Google Scholar 

  • Nielsen C (1991) The development of the brachiopod Crania (Neocrania) anomala (O. F. Müller) and its phylogenetic significance. Acta Zool 72:7–28

    Article  Google Scholar 

  • Paine RT (1963) Ecology of the brachiopod Glottidia pyramidata. Ecol Monogr 33:187–213

    Article  Google Scholar 

  • Passamaneck YJ, Martindale MQ (2013) Evidence for a phototransduction cascade in an early brachiopod embryo. Integr Comp Biol 53:17–26

    Article  CAS  PubMed  Google Scholar 

  • Passamaneck YJ, Furchheim N, Hejnol A, Martindale MQ, Lüter C (2011) Ciliary photoreceptors in the cerebral eyes of a protostome larva. EvoDevo 2:6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pennington JT, Tamburri MN, Barry JP (1999) Development, temperature tolerance, and settlement preference of embryos and larvae of the articulate brachiopod Laqueus californianus. Biol Bull 196:245–256

    Article  Google Scholar 

  • Richardson JR (1997) Ecology of articulated brachiopods. In: Kaelser RL (ed) Treatise on invertebrate paleotology, Pt. H., Revised. The Geological Society of America and The University of Kansas, Boulder and Lawrence, pp 441–462

    Google Scholar 

  • Rong J, Cocks LRM (2013) Global diversity and endemism in Early Silurian (Aeronian) brachiopods. Lethaia 47:77–106

    Article  Google Scholar 

  • Röttinger E, Martindale MQ (2011) Ventralization of an indirect developing hemichordate by NiCl2 suggests a conserved mechanism of dorso-ventral (D/V) patterning in Ambulacraria (hemichordates and echinoderms). Dev Biol 354:173–190

    Article  PubMed  Google Scholar 

  • Santagata S (2004) Larval development of Phoronis pallida (Phoronida): implications for morphological convergence and divergence among larval body plans. J Morphol 259:347–358

    Article  PubMed  Google Scholar 

  • Santagata S (2011) Evaluating neurophylogenetic patterns in the larval nervous systems of brachiopods and their evolutionary significance to other bilaterian phyla. J Morphol 272:1153–1169

    Article  PubMed  Google Scholar 

  • Santagata S, Cohen BL (2009) Phoronid phylogenetics (Brachiopoda; Phoronata): evidence from morphological cladistics, small and large subunit rDNA sequences, and mitochondrial cox1. Zool J Linn Soc 157:34–50

    Article  Google Scholar 

  • Santagata S, Resh C, Hejnol A, Martindale MQ, Passamaneck YJ (2012) Development of the larval anterior neurogenic domains of Terebratalia transversa (Brachiopoda) provides insights into the diversification of larval apical organs and the spiralian nervous system. EvoDevo 3:3

    Article  PubMed Central  PubMed  Google Scholar 

  • Schreiber HA, Bitner MA, Carlson SJ (2013) Morphological analysis of phylogenetic relationships among extant rhynchonellid brachiopods. J Paleontol 87:550–569

    Article  Google Scholar 

  • Seidel R, Hoffmann J, Kaulfuss A, Lüter C (2012) Comparative histology of larval brooding in Thecideoidea (Brachiopoda). Zool Anz 251:288–296

    Article  Google Scholar 

  • Skovsted CB, Brock GA, Topper TP, Paterson JR, Holmer LE (2011) Scleritome construction, biofacies, biostratigraphy and systematics of the tommotiid Eccentrotheca helenia sp. nov. from the Early Cambrian of South Australia. Palaeontology 54:253–286

    Article  Google Scholar 

  • Smart TI, von Dassow G (2009) Unusual development of the mitraria larva in the polychaete Owenia collaris. Biol Bull 217:253–268

    PubMed  Google Scholar 

  • Sperling EA, Pisani D, Peterson KJ (2011) Molecular paleobiological insights into the origin of the Brachiopoda. Evol Dev 13:290–303

    Article  PubMed  Google Scholar 

  • Steinmetz PR, Urbach R, Posnien N, Eriksson J, Kostyuchenko RP, Brena C, Guy K, Akam M, Bucher G, Arendt D (2010) Six3 demarcates the anterior-most developing brain region in bilaterian animals. EvoDevo 1:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Stricker SA, Reed CG (1985a) Development of the pedicle in the articulate brachiopod Terebratalia transversa (Brachiopoda, Terebratulida). Zoomorphology 105:253–264

    Article  Google Scholar 

  • Stricker SA, Reed CG (1985b) The ontogeny of shell secretion in Terebratalia transversa (Brachiopoda, Articulata) I. Development of the mantle. J Morphol 183:233–250

    Article  CAS  PubMed  Google Scholar 

  • Stricker SA, Reed CG (1985c) The ontogeny of shell secretion in Terebratalia transversa (Brachiopoda, Articulata) II. Formation of the protegulum and juvenile shell. J Morphol 183:251–271

    Article  CAS  PubMed  Google Scholar 

  • Tessmar-Raible K (2007) The evolution of neurosecretory centers in bilaterian forebrains: insights from protostomes. Semin Cell Dev Biol 18:492–501

    Article  CAS  PubMed  Google Scholar 

  • Tessmar-Raible K, Raible F, Christodoulou F, Guy K, Rembold M, Hausen H, Arendt D (2007) Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell 129:1389–1400

    Article  CAS  PubMed  Google Scholar 

  • Thomson RC, Plachetzki DC, Luke Mahler D, Moore BR (2014) A critical appraisal of the use of microRNA data in phylogenetics. Proc Nat Acad Sci US Am 10:1073

    Google Scholar 

  • Topper TP, Holmer LE, Skovsted CB, Brock GA, Balthasar U, Larsson CM, Stolk SP, Harper DA (2013) The oldest brachiopods from the lower Cambrian of South Australia. Acta Palaeontol Pol 58:93–109

    Google Scholar 

  • Wanninger A (2009) Shaping the things to come: ontogeny of lophotrochozoan neuromuscular systems and the Tetraneuralia concept. Biol Bull 216:293–306

    PubMed  Google Scholar 

  • Williams A, Carlson SJ, Brunton CHC, Holmer LE, Popov L (1996) A supra-ordinal classification of the Brachiopoda. Philos Trans R Soc B: Biol Sci 351:1171–1193

    Article  Google Scholar 

  • Williams A, James MA, Emig CC, Mackay S, Rhodes MC (1997) Anatomy. In Moore RC (ed) Treatise on invertebrate paleontology, part H (revised), vol 1. Geological Society of America and University of Kansas Press, Boulder and Lawrence. pp 7–188

    Google Scholar 

  • Yaguchi S, Yaguchi J, Wei Z, Shiba K, Angerer LM, Inaba K (2010) ankAT-1 is a novel gene mediating the apical tuft formation in the sea urchin embryo. Dev Biol 348:67–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang S, Lai X, Sheng G, Wang S (2013) Deep genetic divergence within a “living fossil” brachiopod Lingula anatina. J Paleontol 87:902–908

    Article  Google Scholar 

  • Yatsu N (1902) On the development of Lingula anatina. J Coll Sci Imp Univ Tokyo 17:1–112

    Google Scholar 

  • Zimmer RL (1997) Phoronids, brachiopods, and bryozoans, the lophophorates. In: Gilbert SF, Raunio AM (eds) Embryology: constructing the organism. Sinauer Associates, Sunderland, pp 279–305

    Google Scholar 

Download references

Acknowledgments

Kelly Ryan and Russel Zimmer provided excellent comments on previous versions of this chapter. A portion of the data in this book chapter was gathered at the Smithsonian Marine Station (Fort Pierce, FL) and is designated contribution number 990. Faculty Research Grants provided by Long Island University-Post also supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Santagata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Santagata, S. (2015). Brachiopoda. In: Wanninger, A. (eds) Evolutionary Developmental Biology of Invertebrates 2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1871-9_12

Download citation

Publish with us

Policies and ethics