Skip to main content

Nematoda

  • Chapter

Abstract

Nematoda (roundworms) are mostly small animals in the range of only millimeters. While they are hard to see without a microscope, nematodes represent the largest animal phylum with an estimated number in the range of one to ten million species (Lambshead 1993). Nematodes are characterized by three general features. Besides species richness, these are numerical abundance and ecological omnipresence because they usually occur in high numbers and they are found in most ecosystems. For example, in some soil samples, nematodes can occur in excess of one million individuals per square meter (Floyd et al. 2002). The highest diversity of nematodes is found in marine environments and in terrestrial settings, often in association with arthropods or other invertebrates. Some nematodes are important parasites of plants, livestock, and humans. In the last 15 years, molecular phylogenetics has resulted in a comprehensive understanding of the relationships among nematodes that can serve as the basis for evolutionary considerations (van Megen et al. 2009). For example, molecular phylogenetics convincingly showed that parasitism has evolved at least seven times independently in nematodes, involving both plant and animal parasitism (Fig. 2.1; Blaxter et al. 1998). By now, many parasitic nematodes have their genome sequenced (Fig. 2.1), representing a promising starting point to understand associated biological processes (for a review see Sommer and Streit 2011).

Although commonly considered a subtaxon of Cycloneuralia, the Nematoda are covered separately in this chapter.

Chapter vignette artwork by Brigitte Baldrian.© Brigitte Baldrian and Andreas Wanninger.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aboobaker A, Blaxter M (2003) Hox gene evolution in nematodes: novelty conserved. Curr Opin Genet Dev 13:593–598

    Article  CAS  PubMed  Google Scholar 

  • Baldi C, Cho S, Ellis RE (2009) Mutations in two independent pathways are sufficient to create hermaphroditic nematodes. Science 326:1002–1005

    Article  CAS  PubMed  Google Scholar 

  • Bento G, Ogawa A, Sommer RJ (2010) Co-option of the endocrine signaling module dafachronic acid-DAF-12 in nematode evolution. Nature 466:494–497

    Article  CAS  PubMed  Google Scholar 

  • Blaxter ML, de Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas K (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392:71–75

    Article  CAS  PubMed  Google Scholar 

  • Bose N, Ogawa A, von Reuss SH, Yim JJ, Ragsdale EJ, Sommer RJ, Schroeder FC (2012) Complex small molecular architectures regulate phenotypic plasticity in a nematode. Angew Chem 51:12438–12443

    Article  CAS  Google Scholar 

  • Bose N, Meyer JM, Yim JJ, Mayer MG, Markov GV, Ogawa A, Schroeder FC, Sommer RJ (2014) Natural variation in dauer pheromone production and sensing supports intraspecific competition in nematodes. Curr Biol 24:1536–1541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:1–94

    Google Scholar 

  • Chitwood BG, Chitwood MB (1977) Introduction into nematodes. University Park Press, Baltimore

    Google Scholar 

  • Denver D, Clark KA, Raboin MJ (2011) Reproductive mode evolution in nematodes: insight from molecular phylogenies and recently discovered species. Mol Phylogenet Evol 61:584–592

    Article  CAS  PubMed  Google Scholar 

  • Felix MA, Duveau F (2012) Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae. BMC Biol 10:59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Felix MA, Sternberg PW (1996) Symmetry breakage in the development of one-armed gonads in nematodes. Development 112:2129–2142

    Google Scholar 

  • Fitch DHA, Thomas WK (1997) Evolution. In C. elegans II (Riddle DL, Blumenthal T, Meyer BJ, Priess JR. (eds.)). Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11:839–850

    Article  CAS  PubMed  Google Scholar 

  • Gaugler R (ed) (2002) Entomopathogenic nematodes. CABI Publishing, New York

    Google Scholar 

  • Gerhard J, Kirschner M (1997) Cells, embryos and evolution. Blackwell Science, Oxford

    Google Scholar 

  • Gilbert SF, Epel D (2009) Ecological developmental biology. Sinauer Associates, Sunderland

    Google Scholar 

  • Haag E, Wang S, Kimble J (2002) Rapid coevolution of the nematode sex-determination genes fem-3 and tra-2. Curr Biol 12:2035–2041

    Article  CAS  PubMed  Google Scholar 

  • Hall B (1999) The neural crest in development and evolution. Springer, Heidelberg

    Book  Google Scholar 

  • Herrmann M, Mayer EW, Sommer RJ (2006) Nematodes of the genus Pristionchus are closely associated with scarab beetles and the Colorado potato beetle in western Europe. Zoology 109:96–108

    Article  CAS  PubMed  Google Scholar 

  • Herrmann M, Kienle S, Rochat J, Mayer WE, Sommer RJ (2010) Haplotype diversity of the nematode Pristionchus pacificus on Réunion in the Indian Ocean suggests multiple independent invasions. Biol J Linn Soc 100:170–179

    Article  Google Scholar 

  • Hill RC, de Carvalho CE, Salogiannis J, Schlager B, Pilgrim D, Haag ES (2006) Genetic flexibility in the convergent evolution of hermaphroditism in Caenorhabditis nematodes. Dev Cell 10:531–538

    Article  CAS  PubMed  Google Scholar 

  • Hu PJ (2005) Dauer. In: the C. elegans research community (ed) WormBook, http://www.wormbook.org

  • Kanzaki N, Ragsdale E, Herrmann M, Mayer WE, Tanaka R, Sommer RJ (2012) Parapristionchus giblindavisi n. gen, n. sp. (Rhabditida: Diplogastridae) isolated from stag beetles (Coleoptera: Lucanidae) in Japan. Nematology 14:933–947

    Article  Google Scholar 

  • Kenyon C (2010) The genetics of aging. Nature 464:504–512

    Article  CAS  PubMed  Google Scholar 

  • Kimble J, Hirsh D (1979) The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol 70:396–417

    Article  CAS  PubMed  Google Scholar 

  • Kiontke K, Barrière A, Kolotuev I, Podbilewicz B, Sommer RJ, Fitch DH, Felix MA (2007) Trends, stasis and drift in the evolution of nematode vulva development. Curr Biol 17:1925–1937

    Article  CAS  PubMed  Google Scholar 

  • Lambshead PJD (1993) Recent developments in marine benthic biodiversity research. Oceanis 19:5–24

    Google Scholar 

  • Levin M, Hashimshony T, Wagner F, Yanai I (2012) Developmental milestones punctuate gene expression in the Caenorhabditis embryo. Dev Cell 22:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Ludewig AH, Schroeder FC (2013) Ascaroside signaling in C. elegans. In: the C. elegans research community (ed) WormBook, http://www.wormbook.org

  • Lynch M (2007) The origins of genome architecture. Sinauer Associates, Sunderland

    Google Scholar 

  • Mayer MG, Sommer RJ (2011) Natural variation in Pristionchus pacificus dauer formation reveals cross-preference rather than self-preference of nematode dauer pheromones. Proc R Soc B 278:2784–2790

    Article  PubMed Central  PubMed  Google Scholar 

  • Morgan K, McGaughran A, Witte H, Bartelmes G, Villate L, Herrmann M, Rochat J, Sommer RJ (2012) Multi-locus analysis of Pristionchus pacificus on La Réunion Island reveals an evolutionary history shaped by multiple introductions, constrained dispersal events, and rare out-crossing. Mol Ecol 21:250–266

    Article  PubMed  Google Scholar 

  • Poulin R (2007) Evolutionary ecology of parasites. Princeton University Press, Princeton

    Google Scholar 

  • Ragsdale EJ, Mueller MR, Roedelsperger C, Sommer RJ (2013) A developmental switch coupled to the evolution of plasticity acts through a sulfatase. Cell 155:922–933

    Article  CAS  PubMed  Google Scholar 

  • Rebeiz M, Stone T, Posakony JW (2005) An ancient transcriptional regulatory linkage. Dev Biol 281:299–308

    Article  CAS  PubMed  Google Scholar 

  • Sawa H, Korswagen HC (2013) Wnt signaling in C. elegans. In: the C. elegans research community (ed) WormBook, http://www.wormbook.org

  • Schierenberg E, Sommer RJ (2014) Development and reproduction in nematodes. In: Schmidt-Rhaesa (ed) Handbook of zoology. De Gruyter, Berlin/Boston, pp 61–108

    Google Scholar 

  • Schlager B, Röseler W, Zheng M, Gutierrez A, Sommer RJ (2006) HAIRY-like transcription factors and the evolution of the nematode vulva equivalence group. Curr Biol 16:1386–1394

    Article  CAS  PubMed  Google Scholar 

  • Schlichting CD, Pigliucci M (1998) Phenotypic evolution: a reaction norm perspective. Sinauer Associates, Sunderland

    Google Scholar 

  • Sigrist CB, Sommer RJ (1999) Vulva formation in Pristionchus pacificus relies on continuous gonadal induction. Dev Genes Evol 209:451–459

    Article  CAS  PubMed  Google Scholar 

  • Sommer RJ (2008) Homology and the hierarchy of biological systems. Bioessays 30:653–658

    Article  CAS  PubMed  Google Scholar 

  • Sommer RJ (2009) The future of evo-devo: model systems and evolutionary theory. Nat Rev Genet 10:416–422

    CAS  PubMed  Google Scholar 

  • Sommer RJ (ed) (2015) Pristionchus pacificus. A nematode model for comparative and evolutionary biology. Brill, Leiden

    Google Scholar 

  • Sommer RJ, Bumbarger DJ (2012) Nematode models in evolution and development. WIRE Developmental Biology. WIRE, doi: 10.1002/wdev. 33

    Google Scholar 

  • Sommer RJ, Ogawa A (2011) Hormone signaling and phenotypic plasticity in nematode development and evolution. Curr Biol 21:R758–R766

    Article  CAS  PubMed  Google Scholar 

  • Sommer RJ, Sternberg PW (1994) Changes of induction and competence during the evolution of vulva development in nematodes. Science 265:114–118

    Article  CAS  PubMed  Google Scholar 

  • Sommer RJ, Streit A (2011) Comparative genetics and genomics in nematodes: genome structure, development and life style. Ann Rev Genet 45:1–20

    Article  CAS  PubMed  Google Scholar 

  • Sommer RJ, Carta LK, Sternberg PW (1994) The evolution of cell lineage in nematodes. Dev Suppl 85–95

    Google Scholar 

  • Sommer RJ, Carta LK, Kim SY, Sternberg PW (1996) Morphological, genetic and molecular description of Pristionchus pacificus sp. n. (Nematoda, Diplogastridae). Fund Appl Nematol 19:511–521

    Google Scholar 

  • Sternberg PW (2005) Vulval development. In: the C. elegans research community (ed) WormBook, http://www.wormbook.org

  • Sternberg PW, Horvitz HR (1981) Gonadal cell lineages of the nematode Panagrellus redivivus and implications for evolution by modification of cell lineage. Dev Biol 88:147–166

    Article  CAS  PubMed  Google Scholar 

  • Sternberg PW, Horvitz HR (1982) Postembryonic non-gonadal cell lineages of the nematode Panagrellus redivivus: description and comparison with those of Caenorhabditis elegans. Dev Biol 93:181–205

    Article  CAS  PubMed  Google Scholar 

  • Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode Caenorhabditis elegans. Dev Biol 56:110–156

    Article  CAS  PubMed  Google Scholar 

  • Tian H, Schlager B, Xiao H, Sommer RJ (2008) Wnt signaling by differentially expressed Wnt ligands induces vulva development in Pristionchus pacificus. Curr Biol 18:142–146

    Article  CAS  PubMed  Google Scholar 

  • True JR, Haag ES (2001) Developmental system drift and flexibility in evolutionary trajectories. Evol Dev 3:109–119

    Article  CAS  PubMed  Google Scholar 

  • Van Megen H, Van den Elsen S, Holterman M, Karssen G, Mooyman P, Bongers T, Holovachov O, Bakker J, Helder J (2009) A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal sequences. Nematology 11:927–950

    Article  Google Scholar 

  • Wang X, Sommer RJ (2011) Antagonism of LIN-17/Frizzled and LIN-18/Ryk in nematode vulva induction reveals evolutionary alterations in core developmental pathways. PLoS Biol 9:e1001110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weller A, Mayer WE, Rae R, Sommer RJ (2010) Quantitative assessment of the nematode fauna present on Geotrupes dung beetles reveals species-rich communities with a heterogeneous distribution. J Parasitol 96:525–531

    Article  PubMed  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Wood W (ed) (1988) Caenorhabditis elegans. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Zarkover D (2006) Somatic sex determination. In: the C. elegans research community (ed) WormBook, http://www.wormbook.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf J. Sommer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Sommer, R.J. (2015). Nematoda. In: Wanninger, A. (eds) Evolutionary Developmental Biology of Invertebrates 3. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1865-8_2

Download citation

Publish with us

Policies and ethics