Skip to main content

Contribution of pH Alterations to the Tumor Microenvironment

  • Chapter
Book cover Tumor Cell Metabolism

Abstract

A common feature of solid tumors is the accumulation of protons within the extracellular environment, which coupled with disorganized vasculature and inefficient perfusion and clearance cause tumors being acidic tissues. Tumor acidosis, historically associated with increased glycolytic rates but now also explained by the overall high metabolic rates of proliferating cancer cells, represents an important determinant of malignant progression. Low pH in tumors and the reversed gradient between intra- and extracellular pH are associated with increased invasion and metastasis, resistance to cell death and apoptosis, resistance to chemo- and radiotherapy, increased angiogenesis, and escape from immune control. The acidic conditions created within the tumor microenvironment may represent a selection force for more aggressive cancer cells and at the same time a toxic environment for stromal cells. In this chapter, we will summarize the current knowledge about mechanistic determinants and pathophysiological effects of tumor acidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Nedawi K, Meehan B, Rak J (2009) Microvesicles: messengers and mediators of tumor progression. Cell Cycle 8:2014–2018

    CAS  PubMed  Google Scholar 

  • Altan N, Chen Y, Schindler M, Simon SM (1998) Defective acidification in human breast tumor cells and implications for chemotherapy. J Exp Med 187:1583–1598

    PubMed Central  CAS  PubMed  Google Scholar 

  • Avnet S, Di Pompo G, Lemma S, Salerno M, Perut F, Bonuccelli G et al (2013) V-ATPase is a candidate therapeutic target for Ewing sarcoma. Biochim Biophys Acta 1832:1105–1116

    CAS  PubMed  Google Scholar 

  • Balgi AD, Diering GH, Donohue E, Lam KK, Fonseca BD, Zimmerman C et al (2011) Regulation of mTORC1 signaling by pH. PLoS One 6:e21549

    PubMed Central  CAS  PubMed  Google Scholar 

  • Beckner ME, Chen X, An J, Day BW, Pollack IF (2005) Proteomic characterization of harvested pseudopodia with differential gel electrophoresis and specific antibodies. Lab Invest 85:316–327

    CAS  PubMed  Google Scholar 

  • Belhoussine R, Morjani H, Sharonov S, Ploton D, Manfait M (1999) Characterization of intracellular pH gradients in human multidrug-resistant tumor cells by means of scanning microspectrofluorometry and dual-emission-ratio probes. Int J Cancer 81:81–89

    CAS  PubMed  Google Scholar 

  • Bellone M, Calcinotto A, Filipazzi P, De Milito A, Fais S, Rivoltini L (2013) The acidity of the tumor microenvironment is a mechanism of immune escape that can be overcome by proton pump inhibitors. Oncoimmunology 2:e22058

    PubMed Central  PubMed  Google Scholar 

  • Bourguignon LY, Singleton PA, Diedrich F, Stern R, Gilad E (2004) CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J Biol Chem 279:26991–27007

    CAS  PubMed  Google Scholar 

  • Brisson L, Reshkin SJ, Gore J, Roger S (2012) pH regulators in invadosomal functioning: proton delivery for matrix tasting. Eur J Cell Biol 91:847–860

    CAS  PubMed  Google Scholar 

  • Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW et al (2001) Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys 51:349–53

    CAS  PubMed  Google Scholar 

  • Brooks GA (2009) Cell–cell and intracellular lactate shuttles. J Physiol 587:5591–5600

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brooks GA (1998) Mammalian fuel utilization during sustained exercise. Comp Biochem Physiol B Biochem Mol Biol 120:89–107

    CAS  PubMed  Google Scholar 

  • Brooks GA, Dubouchaud H, Brown M, Sicurello JP, Butz CE (1999) Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle. Proc Natl Acad Sci USA 96:1129–1134

    PubMed Central  CAS  PubMed  Google Scholar 

  • Calcinotto A, Filipazzi P, Grioni M, Iero M, De Milito A, Ricupito A et al (2012) Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res 72:2746–2756

    CAS  PubMed  Google Scholar 

  • Cardone RA, Casavola V, Reshkin SJ (2005) The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 5:786–795

    CAS  PubMed  Google Scholar 

  • Chen J-Q, Russo J (2012) Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. Biochim Biophys Acta 1826:370–384

    CAS  PubMed  Google Scholar 

  • Chiche J, Brahimi‐Horn MC, Pouysségur J (2010) Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med 14:771–794

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chiche J, Ilc K, Laferriere J, Trottier E, Dayan F, Mazure NM et al (2009) Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res 69:358–368

    CAS  PubMed  Google Scholar 

  • Chiche J, Le Fur Y, Vilmen C, Frassineti F, Daniel L, Halestrap AP et al (2012) In vivo pH in metabolic-defective Ras-transformed fibroblast tumors: key role of the monocarboxylate transporter, MCT4, for inducing an alkaline intracellular pH. Int J Cancer 130:1511–1520

    CAS  PubMed  Google Scholar 

  • Chung C, Mader CC, Schmitz JC, Atladottir J, Fitchev P, Cornwell ML et al (2011) The vacuolar-ATPase modulates matrix metalloproteinase isoforms in human pancreatic cancer. Lab Invest 91:732–743

    PubMed Central  CAS  PubMed  Google Scholar 

  • Codogno P, Meijer AJ (2005) Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12(Suppl 2):1509–1518

    CAS  PubMed  Google Scholar 

  • De Bari L, Chieppa G, Marra E, Passarella S (2010) L-lactate metabolism can occur in normal and cancer prostate cells via the novel mitochondrial L-lactate dehydrogenase. Int J Oncol 37:1607–1620

    PubMed  Google Scholar 

  • De Milito A, Canese R, Marino ML, Borghi M, Iero M, Villa A et al (2010) pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity. Int J Cancer 127:207–219

    PubMed  Google Scholar 

  • De Milito A, Fais S (2005a) Proton pump inhibitors may reduce tumour resistance. Expert Opin Pharmacother 6:1049–1054

    PubMed  Google Scholar 

  • De Milito A, Fais S (2005b) Tumor acidity, chemoresistance and proton pump inhibitors. Future Oncol 1:779–786

    PubMed  Google Scholar 

  • De Milito A, Marino ML, Fais S (2012) A rationale for the use of proton pump inhibitors as antineoplastic agents. Curr Pharm Des 18:1395–1406

    PubMed  Google Scholar 

  • Dhup S, Dadhich RK, Porporato PE, Sonveaux P (2012) Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr Pharm Des 18:1319–1330

    CAS  PubMed  Google Scholar 

  • Dimmer K, Friedrich B, Lang F, Deitmer J, Broer S (2000) The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem J 350:219–227

    PubMed Central  CAS  PubMed  Google Scholar 

  • Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH, Ibrahim-Hashim A et al (2013) Acidity generated by the tumor microenvironment drives local invasion. Cancer Res 73:1524–1535

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fais S (2010) Proton pump inhibitor-induced tumour cell death by inhibition of a detoxification mechanism. J Intern Med 267:515–525

    CAS  PubMed  Google Scholar 

  • Fais S, De Milito A, You H, Qin W (2007) Targeting vacuolar H+-ATPases as a new strategy against cancer. Cancer Res 67:10627–10630

    CAS  PubMed  Google Scholar 

  • Fan S, Niu Y, Tan N, Wu Z, Wang Y, You H et al (2013) LASS2 enhances chemosensitivity of breast cancer by counteracting acidic tumor microenvironment through inhibiting activity of V-ATPase proton pump. Oncogene 32:1682–1690

    CAS  PubMed  Google Scholar 

  • Fan Y, Dickman KG, Zong W-X (2010) Akt and c-Myc differentially activate cellular metabolic programs and prime cells to bioenergetic inhibition. J Biol Chem 285:7324–7333

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M et al (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109:3812–3819

    CAS  PubMed  Google Scholar 

  • Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8:917–929

    CAS  PubMed  Google Scholar 

  • Friedl P, Wolf K (2009) Proteolytic interstitial cell migration: a five-step process. Cancer Metastasis Rev 28:129–135

    PubMed  Google Scholar 

  • Fukumura D, Xu L, Chen Y, Gohongi T, Seed B, Jain RK (2001) Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res 61:6020–6024

    CAS  PubMed  Google Scholar 

  • Gallagher FA, Kettunen MI, Day SE, Hu DE, Ardenkjaer-Larsen JH, Zandt R et al (2008) Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453:940–943

    CAS  PubMed  Google Scholar 

  • Gallagher SM, Castorino JJ, Wang D, Philp NJ (2007) Monocarboxylate transporter 4 regulates maturation and trafficking of CD147 to the plasma membrane in the metastatic breast cancer cell line MDA-MB-231. Cancer Res 67:4182–4189

    CAS  PubMed  Google Scholar 

  • Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B, Gillies RJ (2006) Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res 66:5216–5223

    CAS  PubMed  Google Scholar 

  • Gatenby RA, Gillies RJ (2008) A microenvironmental model of carcinogenesis. Nat Rev Cancer 8:56–61

    CAS  PubMed  Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    CAS  PubMed  Google Scholar 

  • Generali D, Berruti A, Brizzi MP, Campo L, Bonardi S, Wigfield S et al (2006) Hypoxia-inducible factor-1alpha expression predicts a poor response to primary chemoendocrine therapy and disease-free survival in primary human breast cancer. Clin Cancer Res 12:4562–4568

    CAS  PubMed  Google Scholar 

  • Gerweck LE (1998) Tumor pH: implications for treatment and novel drug design. Semin Radiat Oncol 8:176–182

    CAS  PubMed  Google Scholar 

  • Gerweck LE, Vijayappa S, Kozin S (2006) Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Mol Cancer Ther 5:1275–1279

    CAS  PubMed  Google Scholar 

  • Gillies RJ, Liu Z, Bhujwalla Z (1994) 31P-MRS measurements of extracellular pH of tumors using 3-aminopropylphosphonate. Am J Physiol 267:C195–C203

    CAS  PubMed  Google Scholar 

  • Gillies RJ, Raghunand N, Karczmar GS, Bhujwalla ZM (2002) MRI of the tumor microenvironment. J Magn Reson Imaging 16:430–450

    PubMed  Google Scholar 

  • Gillies RJ, Robey I, Gatenby RA (2008) Causes and consequences of increased glucose metabolism of cancers. J Nucl Med 49(Suppl 2):24S–42S

    CAS  PubMed  Google Scholar 

  • Giusti I, D’Ascenzo S, Millimaggi D, Taraboletti G, Carta G, Franceschini N et al (2008) Cathepsin B mediates the pH-dependent proinvasive activity of tumor-shed microvesicles. Neoplasia 10:481–488

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gladden LB (2004) Lactate metabolism: a new paradigm for the third millennium. J Physiol 558:5–30

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goossens JF, Henichart JP, Dassonneville L, Facompre M, Bailly C (2000) Relation between intracellular acidification and camptothecin-induced apoptosis in leukemia cells. Eur J Pharm Sci 10:125–131

    CAS  PubMed  Google Scholar 

  • Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R et al (2006) Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107:2013–2021

    CAS  PubMed  Google Scholar 

  • Gottlieb RA, Nordberg J, Skowronski E, Babior BM (1996) Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification. Proc Natl Acad Sci USA 93:654–658

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grillon E, Farion R, Fablet K, De Waard M, Tse CM, Donowitz M et al (2011) The spatial organization of proton and lactate transport in a rat brain tumor. PLoS One 6:e17416

    PubMed Central  CAS  PubMed  Google Scholar 

  • Halestrap AP (2012) The monocarboxylate transporter family—structure and functional characterization. IUBMB Life 64:1–9

    CAS  PubMed  Google Scholar 

  • Halestrap AP (2013) The SLC16 gene family—structure, role and regulation in health and disease. Mol Asp Med 34:337–349

    CAS  Google Scholar 

  • Halestrap AP, Meredith D (2004) The SLC16 gene family—from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch 447:619–628

    CAS  PubMed  Google Scholar 

  • Hashimoto T, Hussien R, Brooks GA (2006) Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. Am J Physiol Endocrinol Metab 290:E1237–E1244

    CAS  PubMed  Google Scholar 

  • Helmlinger G, Sckell A, Dellian M, Forbes NS, Jain RK (2002) Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism. Clin Cancer Res 8:1284–1291

    CAS  PubMed  Google Scholar 

  • Helmlinger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3:177–182

    CAS  PubMed  Google Scholar 

  • Hendrix A, Sormunen R, Westbroek W, Lambein K, Denys H, Sys G et al (2013) Vacuolar H+ ATPase expression and activity is required for Rab27B-dependent invasive growth and metastasis of breast cancer. Int J Cancer 133:843–854

    CAS  PubMed  Google Scholar 

  • Hendrix A, Westbroek W, Bracke M, De Wever O (2010) An ex(o)citing machinery for invasive tumor growth. Cancer Res 70:9533–9537

    CAS  PubMed  Google Scholar 

  • Hinton A, Sennoune SR, Bond S, Fang M, Reuveni M, Sahagian GG et al (2009) Function of a subunit isoforms of the V-ATPase in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells. J Biol Chem 284:16400–16408

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hirpara JL, Clement MV, Pervaiz S (2001) Intracellular acidification triggered by mitochondrial-derived hydrogen peroxide is an effector mechanism for drug-induced apoptosis in tumor cells. J Biol Chem 276:514–521

    CAS  PubMed  Google Scholar 

  • Hjelmeland AB, Wu Q, Heddleston JM, Choudhary GS, MacSwords J, Lathia JD et al (2011) Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ 18:829–840

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ho J, de Moura MB, Lin Y, Vincent G, Thorne S, Duncan LM et al (2012) Importance of glycolysis and oxidative phosphorylation in advanced melanoma. Mol Cancer 11:76

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hunt TK, Aslam RS, Beckert S, Wagner S, Ghani QP, Hussain MZ et al (2007) Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal 9:1115–1124

    PubMed Central  CAS  PubMed  Google Scholar 

  • Husain Z, Huang Y, Seth P, Sukhatme VP (2013) Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J Immunol 191:1486–1495

    CAS  PubMed  Google Scholar 

  • Hussain SA, Ganesan R, Reynolds G, Gross L, Stevens A, Pastorek J et al (2007) Hypoxia-regulated carbonic anhydrase IX expression is associated with poor survival in patients with invasive breast cancer. Br J Cancer 96:104–109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hussien R, Brooks GA (2011) Mitochondrial and plasma membrane lactate transporter and lactate dehydrogenase isoform expression in breast cancer cell lines. Physiol Genomics 43:255–264

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ihara Y, Kihara Y, Hamano F, Yanagida K, Morishita Y, Kunita A et al (2010) The G protein-coupled receptor T-cell death-associated gene 8 (TDAG8) facilitates tumor development by serving as an extracellular pH sensor. Proc Natl Acad Sci USA 107:17309–17314

    PubMed Central  CAS  PubMed  Google Scholar 

  • Izumi H, Takahashi M, Uramoto H, Nakayama Y, Oyama T, Wang KY et al (2011) Monocarboxylate transporters 1 and 4 are involved in the invasion activity of human lung cancer cells. Cancer Sci 102:1007–1013

    CAS  PubMed  Google Scholar 

  • Jensen PB, Sorensen BS, Sehested M, Grue P, Demant EJ, Hansen HH (1994) Targeting the cytotoxicity of topoisomerase II-directed epipodophyllotoxins to tumor cells in acidic environments. Cancer Res 54:2959–2963

    CAS  PubMed  Google Scholar 

  • Kareva I, Hahnfeldt P (2013) The emerging “hallmarks” of metabolic reprogramming and immune evasion: distinct or linked? Cancer Res 73:2737–2742

    CAS  PubMed  Google Scholar 

  • Kato Y, Nakayama Y, Umeda M, Miyazaki K (1992) Induction of 103-kDa gelatinase/type IV collagenase by acidic culture conditions in mouse metastatic melanoma cell lines. J Biol Chem 267:11424–11430

    CAS  PubMed  Google Scholar 

  • Kharaziha P, Ceder S, Li Q, Panaretakis T (2012) Tumor cell-derived exosomes: a message in a bottle. Biochim Biophys Acta 1826:103–111

    CAS  PubMed  Google Scholar 

  • Kucharzewska P, Belting M (2013) Emerging roles of extracellular vesicles in the adaptive response of tumour cells to microenvironmental stress. J Extracell Vesicles 2:20304. doi:10.3402/jev.v2i0.20304

    Google Scholar 

  • L’Allemain G, Paris S, Pouyssegur J (1984) Growth factor action and intracellular pH regulation in fibroblasts. Evidence for a major role of the Na+/H+ antiport. J Biol Chem 259:5809–5815

    PubMed  Google Scholar 

  • Lagadic-Gossmann D, Huc L, Lecureur V (2004) Alterations of intracellular pH homeostasis in apoptosis: origins and roles. Cell Death Differ 11:953–961

    CAS  PubMed  Google Scholar 

  • Lane AN, Fan TWM, Higashi RM (2009) Metabolic acidosis and the importance of balanced equations. Metabolomics 5:163–165

    CAS  Google Scholar 

  • Lardner A (2001) The effects of extracellular pH on immune function. J Leukoc Biol 69:522–530

    CAS  PubMed  Google Scholar 

  • Le Floch R, Chiche J, Marchiq I, Naiken T, Ilc K, Murray CM et al (2011) CD147 subunit of lactate/H+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. Proc Natl Acad Sci USA 108:16663–16668

    PubMed Central  PubMed  Google Scholar 

  • Lee GH, Yan C, Shin SJ, Hong SC, Ahn T, Moon A et al (2010) BAX inhibitor-1 enhances cancer metastasis by altering glucose metabolism and activating the sodium-hydrogen exchanger: the alteration of mitochondrial function. Oncogene 29:2130–2141

    CAS  PubMed  Google Scholar 

  • Li J, Eastman A (1995) Apoptosis in an interleukin-2-dependent cytotoxic T lymphocyte cell line is associated with intracellular acidification. Role of the Na(+)/H(+)-antiport. J Biol Chem 270:3203–3211

    CAS  PubMed  Google Scholar 

  • Loeffler DA, Juneau PL, Heppner GH (1991) Natural killer-cell activity under conditions reflective of tumor micro-environment. Int J Cancer 48:895–899

    CAS  PubMed  Google Scholar 

  • Loeffler DA, Juneau PL, Masserant S (1992) Influence of tumour physico-chemical conditions on interleukin-2-stimulated lymphocyte proliferation. Br J Cancer 66:619–622

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lu X, Qin W, Li J, Tan N, Pan D, Zhang H et al (2005) The growth and metastasis of human hepatocellular carcinoma xenografts are inhibited by small interfering RNA targeting to the subunit ATP6L of proton pump. Cancer Res 65:6843–6849

    CAS  PubMed  Google Scholar 

  • Luciani F, Spada M, De Milito A, Molinari A, Rivoltini L, Montinaro A et al (2004) Effect of proton pump inhibitor pretreatment on resistance of solid tumors to cytotoxic drugs. J Natl Cancer Inst 96:1702–1713

    CAS  PubMed  Google Scholar 

  • Ludwig MG, Vanek M, Guerini D, Gasser JA, Jones CE, Junker U et al (2003) Proton-sensing G-protein-coupled receptors. Nature 425:93–98

    CAS  PubMed  Google Scholar 

  • Mahoney BP, Raghunand N, Baggett B, Gillies RJ (2003) Tumor acidity, ion trapping and chemotherapeutics. I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol 66:1207–1218

    CAS  PubMed  Google Scholar 

  • Marches R, Vitetta ES, Uhr JW (2001) A role for intracellular pH in membrane IgM-mediated cell death of human B lymphomas. Proc Natl Acad Sci USA 98:3434–3439

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marino ML, Pellegrini P, Di Lernia G, Djavaheri-Mergny M, Brnjic S, Zhang X et al (2012) Autophagy is a protective mechanism for human melanoma cells under acidic stress. J Biol Chem 287:30664–30676

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marshansky V, Futai M (2008) The V-type H+-ATPase in vesicular trafficking: targeting, regulation and function. Curr Opin Cell Biol 20:415–426

    CAS  PubMed  Google Scholar 

  • Martinez-Zaguilan R, Lynch RM, Martinez GM, Gillies RJ (1993) Vacuolar-type H(+)-ATPases are functionally expressed in plasma membranes of human tumor cells. Am J Physiol 265:C1015–C1029

    CAS  PubMed  Google Scholar 

  • Martinez-Zaguilan R, Raghunand N, Lynch RM, Bellamy W, Martinez GM, Rojas B et al (1999) pH and drug resistance. I. Functional expression of plasmalemmal V-type H+-ATPase in drug-resistant human breast carcinoma cell lines. Biochem Pharmacol 57:1037–1046

    CAS  PubMed  Google Scholar 

  • Martinez-Zaguilan R, Seftor EA, Seftor RE, Chu YW, Gillies RJ, Hendrix MJ (1996) Acidic pH enhances the invasive behavior of human melanoma cells. Clin Exp Metastasis 14:176–186

    CAS  PubMed  Google Scholar 

  • Matsuyama S, Llopis J, Deveraux QL, Tsien RY, Reed JC (2000) Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol 2:318–325

    CAS  PubMed  Google Scholar 

  • Meijer AJ, Codogno P (2009) Autophagy: regulation and role in disease. Crit Rev Clin Lab Sci 46:210–240

    CAS  PubMed  Google Scholar 

  • Miller BF, Fattor JA, Jacobs KA, Horning MA, Navazio F, Lindinger MI et al (2002) Lactate and glucose interactions during rest and exercise in men: effect of exogenous lactate infusion. J Physiol 544:963–975

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miraglia E, Viarisio D, Riganti C, Costamagna C, Ghigo D, Bosia A (2005) Na+/H+ exchanger activity is increased in doxorubicin-resistant human colon cancer cells and its modulation modifies the sensitivity of the cells to doxorubicin. Int J Cancer 115:924–929

    CAS  PubMed  Google Scholar 

  • Miranda-Gonçalves V, Honavar M, Pinheiro C, Martinho O, Pires MM, Pinheiro C et al (2013) Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Neuro-Oncology 15:172–188

    PubMed Central  PubMed  Google Scholar 

  • Moellering RE, Black KC, Krishnamurty C, Baggett BK, Stafford P, Rain M et al (2008) Acid treatment of melanoma cells selects for invasive phenotypes. Clin Exp Metastasis 25:411–425

    CAS  PubMed  Google Scholar 

  • Mohamed MM, Sloane BF (2006) Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 6:764–775

    CAS  PubMed  Google Scholar 

  • Morita T, Nagaki T, Fukuda I, Okumura K (1992) Clastogenicity of low pH to various cultured mammalian cells. Mutat Res 268:297–305

    CAS  PubMed  Google Scholar 

  • Mortensen BT, Jensen PO, Helledie N, Iversen PO, Ralfkiaer E, Larsen JK et al (1998) Changing bone marrow micro-environment during development of acute myeloid leukaemia in rats. Br J Haematol 102:458–464

    CAS  PubMed  Google Scholar 

  • Muramatsu T, Miyauchi T (2003) Basigin (CD147): a multifunctional transmembrane protein involved in reproduction, neural function, inflammation and tumor invasion. Histol Histopathol 18:981–987

    CAS  PubMed  Google Scholar 

  • Nakayama Y, Torigoe T, Inoue Y, Minagawa N, Izumi H, Kohno K et al (2012) Prognostic significance of monocarboxylate transporter 4 expression in patients with colorectal cancer. Exp Ther Med 3:25–30

    PubMed Central  PubMed  Google Scholar 

  • Neri D, Supuran CT (2011) Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 10:767–777

    CAS  PubMed  Google Scholar 

  • Newell K, Franchi A, Pouyssegur J, Tannock I (1993) Studies with glycolysis-deficient cells suggest that production of lactic acid is not the only cause of tumor acidity. Proc Natl Acad Sci USA 90:1127–1131

    PubMed Central  CAS  PubMed  Google Scholar 

  • Newsholme EA, Crabtree B, Ardawi MSM (1985) The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells. Biosci Rep 5:393–400

    CAS  PubMed  Google Scholar 

  • Nguyen TN, Wang HJ, Zalzal S, Nanci A, Nabi IR (2000) Purification and characterization of beta-actin-rich tumor cell pseudopodia: role of glycolysis. Exp Cell Res 258:171–183

    CAS  PubMed  Google Scholar 

  • Nilsson C, Johansson U, Johansson AC, Kagedal K, Ollinger K (2006) Cytosolic acidification and lysosomal alkalinization during TNF-alpha induced apoptosis in U937 cells. Apoptosis 11:1149–1159

    CAS  PubMed  Google Scholar 

  • Nishi T, Forgac M (2002) The vacuolar (H+)-ATPases–nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103

    CAS  PubMed  Google Scholar 

  • Okada S, Ono K, Hamada N, Inada T, Kubota N (2001) A low-pH culture condition enhances the radiosensitizing effect of wortmannin. Int J Radiat Oncol Biol Phys 49:1149–1156

    CAS  PubMed  Google Scholar 

  • Orive G, Reshkin SJ, Harguindey S, Pedraz JL (2003) Hydrogen ion dynamics and the Na+/H+ exchanger in cancer angiogenesis and antiangiogenesis. Br J Cancer 89:1395–1399

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ouar Z, Lacave R, Bens M, Vandewalle A (1999) Mechanisms of altered sequestration and efflux of chemotherapeutic drugs by multidrug-resistant cells. Cell Biol Toxicol 15:91–100

    CAS  PubMed  Google Scholar 

  • Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong S-E et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123

    PubMed Central  CAS  PubMed  Google Scholar 

  • Paris S, Pouyssegur J (1984) Growth factors activate the Na+/H+ antiporter in quiescent fibroblasts by increasing its affinity for intracellular H+. J Biol Chem 259:10989–10994

    CAS  PubMed  Google Scholar 

  • Park HJ, Makepeace CM, Lyons JC, Song CW (1996) Effect of intracellular acidity and ionomycin on apoptosis in HL-60 cells. Eur J Cancer 32A:540–546

    CAS  PubMed  Google Scholar 

  • Parks SK, Chiche J, Pouyssegur J (2013) Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer 13:611–623

    CAS  PubMed  Google Scholar 

  • Parks SK, Chiche J, Pouyssegur J (2011) pH control mechanisms of tumor survival and growth. J Cell Physiol 226:299–308

    CAS  PubMed  Google Scholar 

  • Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A et al (2009) Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 284:34211–34222

    PubMed Central  CAS  PubMed  Google Scholar 

  • Passarella S, de Bari L, Valenti D, Pizzuto R, Paventi G, Atlante A (2008) Mitochondria and L-lactate metabolism. FEBS Lett 582:3569–3576

    CAS  PubMed  Google Scholar 

  • Patel KJ, Lee C, Tan Q, Tannock IF (2013) Use of the proton pump inhibitor pantoprazole to modify the distribution and activity of doxorubicin: a potential strategy to improve the therapy of solid tumors. Clin Cancer Res 19:6766–6776

    CAS  PubMed  Google Scholar 

  • Pavlides S, Vera I, Gandara R, Sneddon S, Pestell RG, Mercier I et al (2012) Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxid Redox Signal 16:1264–1284

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG et al (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8:3984–4001

    CAS  PubMed  Google Scholar 

  • Pellegrini P, Strambi A, Zipoli C, Hagg-Olofsson M, Buoncervello M, Linder S et al (2014) Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies. Autophagy 10

    Google Scholar 

  • Pinheiro C, Albergaria A, Paredes J, Sousa B, Dufloth R, Vieira D et al (2010a) Monocarboxylate transporter 1 is up‐regulated in basal‐like breast carcinoma. Histopathology 56:860–867

    PubMed  Google Scholar 

  • Pinheiro C, Reis RM, Ricardo S, Longatto-Filho A, Schmitt F, Baltazar F (2010b) Expression of monocarboxylate transporters 1, 2, and 4 in human tumours and their association with CD147 and CD44. BioMed Res Int 2010:427694

    Google Scholar 

  • Pizzuto R, Paventi G, Porcile C, Sarnataro D, Daniele A, Passarella S (2012) l-Lactate metabolism in HEP G2 cell mitochondria due to the l-lactate dehydrogenase determines the occurrence of the lactate/pyruvate shuttle and the appearance of oxaloacetate, malate and citrate outside mitochondria. Biochim Biophys Acta 1817:1679–1690

    CAS  PubMed  Google Scholar 

  • Porporato PE, Dhup S, Dadhich RK, Copetti T, Sonveaux P (2011) Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol 2:49

    PubMed Central  PubMed  Google Scholar 

  • Pouysségur J, Franchi A, L’Allemain G, Paris S (1985) Cytoplasmic pH, a key determinant of growth factor-induced DNA synthesis in quiescent fibroblasts. FEBS Lett 190:115–119

    PubMed  Google Scholar 

  • Provent P, Benito M, Hiba B, Farion R, Lopez-Larrubia P, Ballesteros P et al (2007) Serial in vivo spectroscopic nuclear magnetic resonance imaging of lactate and extracellular pH in rat gliomas shows redistribution of protons away from sites of glycolysis. Cancer Res 67:7638–7645

    CAS  PubMed  Google Scholar 

  • Quaytman SL, Schwartz SD (2007) Reaction coordinate of an enzymatic reaction revealed by transition path sampling. Proc Natl Acad Sci USA 104:12253–12258

    PubMed Central  CAS  PubMed  Google Scholar 

  • Quennet V, Yaromina A, Zips D, Rosner A, Walenta S, Baumann M et al (2006) Tumor lactate content predicts for response to fractionated irradiation of human squamous cell carcinomas in nude mice. Radiother Oncol 81:130–135

    CAS  PubMed  Google Scholar 

  • Raghunand N, Altbach MI, van Sluis R, Baggett B, Taylor CW, Bhujwalla ZM et al (1999a) Plasmalemmal pH-gradients in drug-sensitive and drug-resistant MCF-7 human breast carcinoma xenografts measured by 31P magnetic resonance spectroscopy. Biochem Pharmacol 57:309–312

    CAS  PubMed  Google Scholar 

  • Raghunand N, Gillies RJ (2000) pH and drug resistance in tumors. Drug Resist Updat 3:39–47

    CAS  PubMed  Google Scholar 

  • Raghunand N, Mahoney BP, Gillies RJ (2003) Tumor acidity, ion trapping and chemotherapeutics. II. pH-dependent partition coefficients predict importance of ion trapping on pharmacokinetics of weakly basic chemotherapeutic agents. Biochem Pharmacol 66:1219–1229

    CAS  PubMed  Google Scholar 

  • Raghunand N, Martinez-Zaguilan R, Wright SH, Gillies RJ (1999b) pH and drug resistance. II. Turnover of acidic vesicles and resistance to weakly basic chemotherapeutic drugs. Biochem Pharmacol 57:1047–1058

    CAS  PubMed  Google Scholar 

  • Rajamaki K, Nordstrom T, Nurmi K, Akerman KE, Kovanen PT, Oorni K et al (2013) Extracellular acidosis is a novel danger signal alerting innate immunity via the NLRP3 inflammasome. J Biol Chem 288:13410–13419

    PubMed Central  CAS  PubMed  Google Scholar 

  • Redegeld F, Filippini A, Sitkovsky M (1991) Comparative studies of the cytotoxic T lymphocyte-mediated cytotoxicity and of extracellular ATP-induced cell lysis. Different requirements in extracellular Mg2+ and pH. J Immunol 147:3638–3645

    CAS  PubMed  Google Scholar 

  • Reichert M, Steinbach JP, Supra P, Weller M (2002) Modulation of growth and radiochemosensitivity of human malignant glioma cells by acidosis. Cancer 95:1113–1119

    CAS  PubMed  Google Scholar 

  • Reshkin SJ, Bellizzi A, Caldeira S, Albarani V, Malanchi I, Poignee M et al (2000) Na+/H+ exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes. FASEB J 14:2185–2197

    CAS  PubMed  Google Scholar 

  • Rich IN, Worthington-White D, Garden OA, Musk P (2000) Apoptosis of leukemic cells accompanies reduction in intracellular pH after targeted inhibition of the Na(+)/H(+) exchanger. Blood 95:1427–1434

    CAS  PubMed  Google Scholar 

  • Robergs RA, Ghiasvand F, Parker D (2004) Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 287:R502–R516

    CAS  PubMed  Google Scholar 

  • Robey IF, Baggett BK, Kirkpatrick ND, Roe DJ, Dosescu J, Sloane BF et al (2009) Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Res 69:2260–2268

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rofstad EK, Mathiesen B, Kindem K, Galappathi K (2006) Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res 66:6699–6707

    CAS  PubMed  Google Scholar 

  • Roos A (1978) Weak acids, weak bases and intracellular pH. Respir Physiol 33:27–30

    CAS  PubMed  Google Scholar 

  • Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61:296–434

    CAS  PubMed  Google Scholar 

  • Ryder C, McColl K, Zhong F, Distelhorst CW (2012) Acidosis promotes Bcl-2 family-mediated evasion of apoptosis: involvement of acid-sensing G protein-coupled receptor Gpr65 signaling to Mek/Erk. J Biol Chem 287:27863–27875

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sauvant C, Nowak M, Wirth C, Schneider B, Riemann A, Gekle M et al (2008) Acidosis induces multi-drug resistance in rat prostate cancer cells (AT1) in vitro and in vivo by increasing the activity of the p-glycoprotein via activation of p38. Int J Cancer 123:2532–2542

    CAS  PubMed  Google Scholar 

  • Semenza GL (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 123:3664–3671

    PubMed Central  CAS  PubMed  Google Scholar 

  • Severin T, Muller B, Giese G, Uhl B, Wolf B, Hauschildt S et al (1994) pH-dependent LAK cell cytotoxicity. Tumour Biol 15:304–310

    CAS  PubMed  Google Scholar 

  • Silva AS, Yunes JA, Gillies RJ, Gatenby RA (2009) The potential role of systemic buffers in reducing intratumoral extracellular pH and acid-mediated invasion. Cancer Res 69:2677–2684

    PubMed Central  CAS  PubMed  Google Scholar 

  • Simon S, Roy D, Schindler M (1994) Intracellular pH and the control of multidrug resistance. Proc Natl Acad Sci USA 91:1128–1132

    PubMed Central  CAS  PubMed  Google Scholar 

  • Slomiany MG, Grass GD, Robertson AD, Yang XY, Maria BL, Beeson C et al (2009) Hyaluronan, CD44, and emmprin regulate lactate efflux and membrane localization of monocarboxylate transporters in human breast carcinoma cells. Cancer Res 69:1293–1301

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN et al (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942

    PubMed Central  CAS  PubMed  Google Scholar 

  • Steffan JJ, Williams BC, Welbourne T, Cardelli JA (2010) HGF-induced invasion by prostate tumor cells requires anterograde lysosome trafficking and activity of Na+-H+ exchangers. J Cell Sci 123:1151–1159

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stock C, Gassner B, Hauck CR, Arnold H, Mally S, Eble JA et al (2005) Migration of human melanoma cells depends on extracellular pH and Na+/H+ exchange. J Physiol 567:225–238

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stock C, Schwab A (2009) Protons make tumor cells move like clockwork. Pflugers Arch 458:981–992

    CAS  PubMed  Google Scholar 

  • Supuran CT (2008) Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 7:168–181

    CAS  PubMed  Google Scholar 

  • Svastova E, Witarski W, Csaderova L, Kosik I, Skvarkova L, Hulikova A et al (2012) Carbonic anhydrase IX interacts with bicarbonate transporters in lamellipodia and increases cell migration via its catalytic domain. J Biol Chem 287:3392–3402

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tan EY, Yan M, Campo L, Han C, Takano E, Turley H et al (2009) The key hypoxia regulated gene CAIX is upregulated in basal-like breast tumours and is associated with resistance to chemotherapy. Br J Cancer 100:405–411

    PubMed Central  CAS  PubMed  Google Scholar 

  • Taraboletti G, D’Ascenzo S, Giusti I, Marchetti D, Borsotti P, Millimaggi D et al (2006) Bioavailability of VEGF in tumor-shed vesicles depends on vesicle burst induced by acidic pH. Neoplasia 8:96

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thews O, Gassner B, Kelleher DK, Schwerdt G, Gekle M (2006) Impact of extracellular acidity on the activity of P-glycoprotein and the cytotoxicity of chemotherapeutic drugs. Neoplasia 8:143–152

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tredan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99:1441–1454

    CAS  PubMed  Google Scholar 

  • Ullah MS, Davies AJ, Halestrap AP (2006) The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1α-dependent mechanism. J Biol Chem 281:9030–9037

    CAS  PubMed  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–6465

    CAS  PubMed  Google Scholar 

  • Wahl ML, Owen JA, Burd R, Herlands RA, Nogami SS, Rodeck U et al (2002) Regulation of intracellular pH in human melanoma: potential therapeutic implications. Mol Cancer Ther 1:617–628

    CAS  PubMed  Google Scholar 

  • Walenta S, Mueller-Klieser WF (2004) Lactate: mirror and motor of tumor malignancy. Semin Radiat Oncol 14:267–274

    PubMed  Google Scholar 

  • Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfør K, Rofstad EK et al (2000) High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 60:916–921

    CAS  PubMed  Google Scholar 

  • Walters DK, Arendt BK, Jelinek DF (2013) CD147 regulates the expression of MCT1 and lactate export in multiple myeloma cells. Cell Cycle 12

    Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    CAS  PubMed  Google Scholar 

  • Webb BA, Chimenti M, Jacobson MP, Barber DL (2011) Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer 11:671–677

    CAS  PubMed  Google Scholar 

  • Wiedmann RM, von Schwarzenberg K, Palamidessi A, Schreiner L, Kubisch R, Liebl J et al (2012) The V-ATPase-inhibitor archazolid abrogates tumor metastasis via inhibition of endocytic activation of the Rho-GTPase Rac1. Cancer Res 72:5976–5987

    CAS  PubMed  Google Scholar 

  • Witkiewicz AK, Whitaker-Menezes D, Dasgupta A, Philp NJ, Lin Z, Gandara R et al (2012) Using the “reverse Warburg effect” to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle 11:1108–1117

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wojtkowiak JW, Rothberg JM, Kumar V, Schramm KJ, Haller E, Proemsey JB et al (2012) Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments. Cancer Res 72:3938–3947

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wojtkowiak JW, Verduzco D, Schramm KJ, Gillies RJ (2011) Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol Pharm 8:2032–2038

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu H, Ding Z, Hu D, Sun F, Dai C, Xie J et al (2012) Central role of lactic acidosis in cancer cell resistance to glucose deprivation-induced cell death. J Pathol 227:189–199

    CAS  PubMed  Google Scholar 

  • Wykoff CC, Beasley NJ, Watson PH, Turner KJ, Pastorek J, Sibtain A et al (2000) Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res 60:7075–7083

    CAS  PubMed  Google Scholar 

  • Xu J, Xie R, Liu X, Wen G, Jin H, Yu Z et al (2012a) Expression and functional role of vacuolar H(+)-ATPase in human hepatocellular carcinoma. Carcinogenesis 33:2432–2440

    CAS  PubMed  Google Scholar 

  • Xu L, Fidler IJ (2000) Acidic pH-induced elevation in interleukin 8 expression by human ovarian carcinoma cells. Cancer Res 60:4610–4616

    CAS  PubMed  Google Scholar 

  • Xu L, Fukumura D, Jain RK (2002) Acidic extracellular pH induces vascular endothelial growth factor (VEGF) in human glioblastoma cells via ERK1/2 MAPK signaling pathway: mechanism of low pH-induced VEGF. J Biol Chem 277:11368–11374

    CAS  PubMed  Google Scholar 

  • Xu X, You J, Pei F (2012b) Silencing of a novel tumor metastasis suppressor gene LASS2/TMSG1 promotes invasion of prostate cancer cell in vitro through increase of vacuolar ATPase activity. J Cell Biochem 113:2356–2363

    CAS  PubMed  Google Scholar 

  • Yamagata M, Hasuda K, Stamato T, Tannock IF (1998) The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase. Br J Cancer 77:1726–1731

    PubMed Central  CAS  PubMed  Google Scholar 

  • You H, Jin J, Shu H, Yu B, Milito AD, Lozupone F et al (2009) Small interfering RNA targeting the subunit ATP6L of proton pump V-ATPase overcomes chemoresistance of breast cancer cells. Cancer Lett 280:110–119

    CAS  PubMed  Google Scholar 

  • Yuan J, Narayanan L, Rockwell S, Glazer PM (2000) Diminished DNA repair and elevated mutagenesis in mammalian cells exposed to hypoxia and low pH. Cancer Res 60:4372–4376

    CAS  PubMed  Google Scholar 

  • Zheng G, Zhou M, Ou X, Peng B, Yu Y, Kong F et al (2010) Identification of carbonic anhydrase 9 as a contributor to pingyangmycin-induced drug resistance in human tongue cancer cells. FEBS J 277:4506–4518

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Angela Strambi was supported by the Boncompagni-Ludovisi Foundation. Angelo De Milito is supported by grants from the Association for International Cancer Research (grant #11-0522) and the Swedish Cancer Society (grant # CAN 2012/415).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo De Milito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Strambi, A., De Milito, A. (2015). Contribution of pH Alterations to the Tumor Microenvironment. In: Mazurek, S., Shoshan, M. (eds) Tumor Cell Metabolism. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1824-5_9

Download citation

Publish with us

Policies and ethics