Skip to main content

3D Visualisation of Skin Substitutes

  • Chapter
  • First Online:
Book cover Dermal Replacements in General, Burn, and Plastic Surgery

Abstract

Diagnosing skin diseases and researching the genesis of skin pathologies would substantially profit from sound topological information of the structures composing the layers of normal and pathologically transformed skin. Likewise, designing skin regeneration material, improving its quality, and evaluating the transformation it undergoes after implantation require the precise visualisation of the architecture of this material and the three-dimensional (3D) arrangement of the cells and tissues populating it. Although the last decades saw the development of a great number of potent new 2D and 3D imaging techniques (Boppart et al. 1996; Kolker et al. 2000; Smith 2001; Sharpe et al. 2002; Sharpe 2003; Johnson et al. 2006; Weninger et al. 2006; Dodt et al. 2007; Filas et al. 2007; Wanninger 2007; Cavey and Lecuit 2008; Geyer et al. 2009; Metscher 2009; Mohun and Weninger 2011), high-quality 3D visualisation of skin architecture and skin replacement materials is still a major technical challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahrens ET, Srinivas M, Capuano S, Simhan HN, Schatten GP (2006) Magnetic resonance imaging of embryonic and fetal development in model systems. Methods Mol Med 124:87–101

    PubMed  Google Scholar 

  • Avni FE, Cos T, Cassart M et al (2007) Evolution of fetal ultrasonography. Eur Radiol 17:419–431

    Article  PubMed  CAS  Google Scholar 

  • Bain MM, Fagan AJ, Mullin JM, McNaught I, McLean J, Condon B (2007) Noninvasive monitoring of chick development in ovo using a 7T MRI system from day 12 of incubation through to hatching. J Magn Reson Imaging 26:198–201

    Article  PubMed  Google Scholar 

  • Bárcena M, Koster AJ (2009) Electron tomography in life science. Semin Cell Dev Biol 20:920–930

    Article  PubMed  Google Scholar 

  • Boppart SA, Brezinski ME, Bouma BE, Tearney GJ, Fujimoto JG (1996) Investigation of developing embryonic morphology using optical coherence tomography. Dev Biol 177:54–63

    Article  PubMed  CAS  Google Scholar 

  • Bryson-Richardson RJ, Berger S, Schilling TF et al (2007) FishNet: an online database of zebrafish anatomy. BMC Biol 5:34

    Article  PubMed  Google Scholar 

  • Cavey M, Lecuit T (2008) Imaging cellular and molecular dynamics in live embryos using fluorescent proteins. Methods Mol Biol 420:219–238

    Article  PubMed  CAS  Google Scholar 

  • Cleary JO, Modat M, Norris FC et al (2011) Magnetic resonance virtual histology for embryos: 3D atlases for automated high-throughput phenotyping. Neuroimage 54:769–778

    Article  PubMed  Google Scholar 

  • Davies JA, Armstrong JE (2006) The anatomy of organogenesis: novel solutions to old problems. Prog Histochem Cytochem 40:165–176

    Article  PubMed  Google Scholar 

  • Deans AE, Wadghiri YZ, Berrios-Otero CA, Turnbull DH (2008) Mn enhancement and respiratory gating for in utero MRI of the embryonic mouse central nervous system. Magn Reson Med 59:1320–1328

    Article  PubMed  Google Scholar 

  • Delaurier A, Burton N, Bennett M et al (2008) The Mouse Limb Anatomy Atlas: an interactive 3D tool for studying embryonic limb patterning. BMC Dev Biol 8:83

    Article  PubMed  Google Scholar 

  • Dhenain M, Ruffins SW, Jacobs RE (2001) Three-dimensional digital mouse atlas using high-resolution MRI. Dev Biol 232:458–470

    Article  PubMed  CAS  Google Scholar 

  • Dodt HU, Leischner U, Schierloh A et al (2007) Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods 4:331–336

    Article  PubMed  CAS  Google Scholar 

  • Ewald AJ, McBride H, Reddington M, Fraser SE, Kerschmann R (2002) Surface imaging microscopy, an automated method for visualizing whole embryo samples in three dimensions at high resolution. Dev Dyn 225:369–375

    Article  PubMed  Google Scholar 

  • Filas BA, Efimov IR, Taber LA (2007) Optical coherence tomography as a tool for measuring morphogenetic deformation of the looping heart. Anat Rec (Hoboken) 290:1057–1068

    Article  Google Scholar 

  • Fisher ME, Clelland AK, Bain A et al (2008) Integrating technologies for comparing 3D gene expression domains in the developing chick limb. Dev Biol 317:13–23

    Article  PubMed  CAS  Google Scholar 

  • Gerneke DA, Sands GB, Ganesalingam R et al (2007) Surface imaging microscopy using an ultramiller for large volume 3D reconstruction of wax- and resin-embedded tissues. Microsc Res Tech 70:886–894

    Article  PubMed  Google Scholar 

  • Geyer SH, Mohun TJ, Weninger WJ (2009) Visualizing vertebrate embryos with episcopic 3D imaging techniques. ScientificWorldJournal 9:1423–1437

    Article  PubMed  Google Scholar 

  • Geyer SH, Maurer B, Pötz L, Singh J, Weninger WJ (2012) HREM-data based measurements of the arteries of mouse embryos: evaluation of significance and reproducibility under routine conditions. Cells Tissues Organs 195(6):524–534

    Article  PubMed  Google Scholar 

  • Guest E, Baldock R (1995) Automatic reconstruction of serial sections using the finite element method. Bioimaging 3:154–167

    Article  Google Scholar 

  • Happel CM, Thrane L, Thommes J, Männer J, Yelbuz TM (2011) Integration of an optical coherence tomography (OCT) system into an examination incubator to facilitate in vivo imaging of cardiovascular development in higher vertebrate embryos under stable physiological conditions. Ann Anat 193:425–435

    Article  PubMed  Google Scholar 

  • Hogers B, Gross D, Lehmann V et al (2000) Magnetic resonance microscopy of mouse embryos in utero. Anat Rec 260:373–377

    Article  PubMed  CAS  Google Scholar 

  • Johnson JT, Hansen MS, Wu I et al (2006) Virtual histology of transgenic mouse embryos for high-throughput phenotyping. PLoS Genet 2:e61

    Article  PubMed  Google Scholar 

  • Kaufman MH, Richardson L (2005) 3D reconstruction of the vessels that enter the right atrium of the mouse heart at Theiler Stage 20. Clin Anat 18:27–38

    Article  PubMed  CAS  Google Scholar 

  • Kolker SJ, Tajchman U, Weeks DL (2000) Confocal imaging of early heart development in Xenopus laevis. Dev Biol 218:64–73

    Article  PubMed  CAS  Google Scholar 

  • Koning RI, Koster AJ (2009) Cryo-electron tomography in biology and medicine. Ann Anat 191:427–445

    Article  PubMed  Google Scholar 

  • Männer J, Thrane L, Norozi K, Yelbuz TM (2008) High-resolution in vivo imaging of the ­cross-sectional deformations of contracting embryonic heart loops using optical coherence tomography. Dev Dyn 237:953–961

    Article  PubMed  Google Scholar 

  • McEwen BF, Marko M (1999) Three-dimensional transmission electron microscopy and its application to mitosis research. Methods Cell Biol 61:81–111

    Article  PubMed  CAS  Google Scholar 

  • Metscher BD (2009) MicroCT for developmental biology: a versatile tool for high-contrast 3D imaging at histological resolutions. Dev Dyn 238:632–640

    Article  PubMed  Google Scholar 

  • Meyer-Wittkopf M, Cooper S, Vaughan J, Sholler G (2001) Three-dimensional (3D) echocardiographic analysis of congenital heart disease in the fetus: comparison with cross-sectional (2D) fetal echocardiography. Ultrasound Obstet Gynecol 17:485–492

    Article  PubMed  CAS  Google Scholar 

  • Mittermayer C, Blaicher W, Brugger PC, Bernaschek G, Lee A (2004) Foetal facial clefts: prenatal evaluation of lip and primary palate by 2D and 3D ultrasound. Ultraschall Med 25:120–125

    Article  PubMed  CAS  Google Scholar 

  • Mohun T, Weninger WJ (2010) Episcopic three-dimensional imaging of embryos. In: Sharpe J, Wong R (eds) Imaging in developmental biology: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Mohun TJ, Weninger WJ (2011) Imaging heart development using high-resolution episcopic microscopy. Curr Opin Genet Dev 21(5):573–578

    Article  PubMed  CAS  Google Scholar 

  • Norozi K, Thrane L, Manner J et al (2008) In vivo visualisation of coronary artery development by high-resolution optical coherence tomography. Heart 94:130

    Article  PubMed  CAS  Google Scholar 

  • Phoon CK (2006) Imaging tools for the developmental biologist: ultrasound biomicroscopy of mouse embryonic development. Pediatr Res 60:14–21

    Article  PubMed  Google Scholar 

  • Pieles G, Geyer SH, Szumska D et al (2007) microMRI-HREM pipeline for high-throughput, high-resolution phenotyping of murine embryos. J Anat 211:132–137

    Article  PubMed  Google Scholar 

  • Sato H, Murphy P, Giles S, Bannigan J, Takayasu H, Puri P (2008) Visualizing expression patterns of Shh and Foxf1 genes in the foregut and lung buds by optical projection tomography. Pediatr Surg Int 24:3–11

    Article  PubMed  Google Scholar 

  • Schneider JE, Bhattacharya S (2004) Making the mouse embryo transparent: identifying ­developmental malformations using magnetic resonance imaging. Birth Defects Res C Embryo Today 72:241–249

    Article  PubMed  CAS  Google Scholar 

  • Schneider JE, Bamforth SD, Farthing CR, Clarke K, Neubauer S, Bhattacharya S (2003a) High-resolution imaging of normal anatomy, and neural and adrenal malformations in mouse embryos using magnetic resonance microscopy. J Anat 202:239–247

    Article  PubMed  Google Scholar 

  • Schneider JE, Bamforth SD, Farthing CR, Clarke K, Neubauer S, Bhattacharya S (2003b) Rapid identification and 3D reconstruction of complex cardiac malformations in transgenic mouse embryos using fast gradient echo sequence magnetic resonance imaging. J Mol Cell Cardiol 35:217–222

    Article  PubMed  CAS  Google Scholar 

  • Sharpe J (2003) Optical projection tomography as a new tool for studying embryo anatomy. J Anat 202:175–181

    Article  PubMed  Google Scholar 

  • Sharpe J, Ahlgren U, Perry P et al (2002) Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296:541–545

    Article  PubMed  CAS  Google Scholar 

  • Shishido O, Yoshida N, Umino O (2000) Image processing experiments for computer-based three-dimensional reconstruction of neurones from electron micrographs from serial ultrathin sections. J Microsc 197:224–238

    Article  PubMed  CAS  Google Scholar 

  • Smith BR (2001) Magnetic resonance microscopy in cardiac development. Microsc Res Tech 52:323–330

    Article  PubMed  CAS  Google Scholar 

  • Soufan AT, Ruijter JM, van den Hoff MJ, de Boer PA, Hagoort J, Moorman AF (2003) Three-dimensional reconstruction of gene expression patterns during cardiac development. Physiol Genomics 13:187–195

    PubMed  CAS  Google Scholar 

  • Streicher J, Weninger WJ, Müller GB (1997) External marker-based automatic congruencing: a new method of 3D reconstruction from serial sections. Anat Rec 248:583–602

    Article  PubMed  CAS  Google Scholar 

  • Streicher J, Donat MA, Strauss B, Spörle R, Schughart K, Müller GB (2000) Computer-based three-dimensional visualization of developmental gene expression. Nat Genet 25:147–152

    Article  PubMed  CAS  Google Scholar 

  • Turnbull DH (1999) In utero ultrasound backscatter microscopy of early stage mouse embryos. Comput Med Imaging Graph 23:25–31

    Article  PubMed  CAS  Google Scholar 

  • Turnbull DH, Mori S (2007) MRI in mouse developmental biology. NMR Biomed 20:265–274

    Article  PubMed  Google Scholar 

  • Visscher MO (2010) Imaging skin: past, present and future perspectives. G Ital Dermatol Venereol 145:11–27

    PubMed  CAS  Google Scholar 

  • Wanninger A (2007) The application of confocal microscopy and 3D imaging software in Functional, Evolutionary, and Developmental Zoology: reconstructing myo- and neurogenesis in space and time. In: Modern research and educational topics in microscopy. Formatex, Bardajoz

    Google Scholar 

  • Weninger WJ, Geyer SH (2008) Episcopic 3D imaging methods: tools for researching gene function. Curr Genomics 9:282–289

    Article  PubMed  CAS  Google Scholar 

  • Weninger WJ, Mohun T (2002) Phenotyping transgenic embryos: a rapid 3-D screening method based on episcopic fluorescence image capturing. Nat Genet 30:59–65

    Article  PubMed  CAS  Google Scholar 

  • Weninger WJ, Mohun TJ (2007) Three-dimensional analysis of molecular signals with episcopic imaging techniques. Methods Mol Biol 411:35–46

    Article  PubMed  CAS  Google Scholar 

  • Weninger WJ, Streicher J, Müller GB (1996) 3-dimensional reconstruction of histological serial sections using a computer. Wien Klin Wochenschr 108:515–520

    PubMed  CAS  Google Scholar 

  • Weninger WJ, Meng S, Streicher J, Müller GB (1998) A new episcopic method for rapid 3-D reconstruction: applications in anatomy and embryology. Anat Embryol (Berl) 197:341–348

    Article  CAS  Google Scholar 

  • Weninger WJ, Geyer SH, Mohun TJ et al (2006) High-resolution episcopic microscopy: a rapid technique for high detailed 3D analysis of gene activity in the context of tissue architecture and morphology. Anat Embryol 211:213–221

    Article  PubMed  Google Scholar 

  • Weninger WJ, Maurer B, Zendron B, Dorfmeister K, Geyer SH (2009) Measurements of the diameters of the great arteries and semi-lunar valves of chick and mouse embryos. J Microsc 234:173–190

    Article  PubMed  CAS  Google Scholar 

  • Yagel S, Cohen SM, Shapiro I, Valsky DV (2007) 3D and 4D ultrasound in fetal cardiac scanning: a new look at the fetal heart. Ultrasound Obstet Gynecol 29:81–95

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Weninger MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Weninger, W.J., Kamolz, LP., Geyer, S.H. (2013). 3D Visualisation of Skin Substitutes. In: Kamolz, LP., Lumenta, D. (eds) Dermal Replacements in General, Burn, and Plastic Surgery. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1586-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1586-2_8

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1585-5

  • Online ISBN: 978-3-7091-1586-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics