Skip to main content

Lung Cancer and Lung Injury: The Dual Role of Ceramide

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 216))

Abstract

Sphingolipids play key roles in cancer, yet our current understanding of sphingolipid function in lung cancer is limited to a few key players. The best characterized of these are sphingosine-1-phoshate and ceramide which are described for their opposing roles in cell fate. However, because sphingolipids as a whole are readily interconverted by a complex enzymatic machinery, no single sphingolipid appears to have exactly one role. Instead, the roles of specific sphingolipids appear to be context specific as demonstrated by findings that ceramide-1-phosphate has both proliferative and apoptotic effects depending on its concentration. Therefore, we present herein several years of research on ceramide, a sphingolipid linked to apoptotic signaling, that is emerging in cancer research for its potential roles in proliferation and cell-to-cell communication via exosomes.

Ceramide is a well-studied sphingolipid in both normal and pathological conditions ranging from skin development to lung cancer. Interestingly, several groups have previously reported its increased levels in emphysema patients who are smokers, a patient subpopulation greatly susceptible to lung cancer. However, the molecular mechanisms through which cigarette smoke (CS) and ceramide accumulation lead to lung cancer, non-small cell lung cancer (NSCLC) specifically, are unknown.

Interestingly, recent studies clearly establish that two signaling pathways are activated during CS exposure in the lung airway. One centers on the activation of neutral sphingomyelinase2 (nSMase2), an enzyme that hydrolyzes sphingomyelin to ceramide. The other pathway focuses on the oncogenic EGF receptor (EGFR), which becomes aberrantly activated but not degraded, leading to prolonged proliferative signaling. Recent studies show that these two signaling pathways may actually converge and integrate. Specifically, Goldkorn et al. demonstrated that during CS exposure, EGFR is favorably co-localized in ceramide-enriched regions of the plasma membrane, proposing that nSMase2/ceramide plays a role in the aberrant EGFR activation, leading to augmented tumorigenic signaling. Moreover, new findings indicate that CS exposure may induce resistance to the tyrosine kinase inhibitors (TKIs), used for treatment of NSCLC, merely through posttranslational molecular alterations. Furthermore, structural anomalies of the CS-activated EGFR appear to be supported by the excess ceramide produced by the CS-activated nSMase2 in the plasma membrane of lung epithelial cells.

We present in this chapter the progression of the sphingolipid field in lung cancer using ceramide as an example. However, many crucial questions remain to be answered regarding the role of sphingolipids in lung cancer because of the glut of promising observations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alberg AJ, Samet JM (2003) Epidemiology of lung cancer. Chest 123:21S–49S

    Article  PubMed  Google Scholar 

  • Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A et al (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10:619–624

    Article  PubMed  CAS  Google Scholar 

  • Al-Nedawi K, Meehan B, Rak J (2009) Microvesicles: messengers and mediators of tumor progression. Cell Cycle 8:2014–2018

    Article  PubMed  CAS  Google Scholar 

  • Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337

    Article  PubMed  CAS  Google Scholar 

  • Caballero A, Torres-Duque CA, Jaramillo C, Bolivar F, Sanabria F, Osorio P et al (2008) Prevalence of COPD in five Colombian cities situated at low, medium, and high altitude (PREPOCOL study). Chest 133:343–349

    Article  PubMed  Google Scholar 

  • Cai H, Babic I, Wei X, Huang J, Witte ON (2011) Invasive prostate carcinoma driven by c-Src and androgen receptor synergy. Cancer Res 71:862–872

    Article  PubMed  CAS  Google Scholar 

  • Ceppi P, Rapa I, Lo Iacono M, Righi L, Giorcelli J, Pautasso M et al (2012) Expression and pharmacological inhibition of thymidylate synthase and Src kinase in nonsmall cell lung cancer. Int J Cancer 130:1777–1786

    Article  PubMed  CAS  Google Scholar 

  • Chan C, Goldkorn T (2000) Ceramide path in human lung cell death. Am J Respir Cell Mol Biol 22:460–468

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006

    Article  PubMed  CAS  Google Scholar 

  • Chung BM, Dimri M, George M, Reddi AL, Chen G, Band V et al (2009) The role of cooperativity with Src in oncogenic transformation mediated by non-small cell lung cancer-associated EGF receptor mutants. Oncogene 28:1821–1832

    Article  PubMed  CAS  Google Scholar 

  • Church DF, Pryor WA (1985) Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect 64:111–126

    Article  PubMed  CAS  Google Scholar 

  • Clarke CJ, Guthrie JM, Hannun YA (2008) Regulation of neutral sphingomyelinase-2 (nSMase2) by tumor necrosis factor-alpha involves protein kinase C-delta in lung epithelial cells. Mol Pharmacol 74:1022–1032

    Article  PubMed  CAS  Google Scholar 

  • Cremesti A, Paris F, Grassme H, Holler N, Tschopp J, Fuks Z et al (2001) Ceramide enables fas to cap and kill. J Biol Chem 276:23954–23961

    Article  PubMed  CAS  Google Scholar 

  • D’Angelo SP, Pietanza MC, Johnson ML, Riely GJ, Miller VA, Sima CS et al (2011) Incidence of EGFR exon 19 deletions and L858R in tumor specimens from men and cigarette smokers with lung adenocarcinomas. J Clin Oncol 29:2066–2070

    Article  PubMed  Google Scholar 

  • de Molina AR, de la Cueva A, Machado-Pinilla R, Rodriguez-Fanjul V, Del Pulgar TG, Cebrian A et al (2012) Acid ceramidase as a chemotherapeutic target to overcome resistance to the antitumoral effect of choline kinase alpha inhibition. Curr Cancer Drug Targets 12(6):617–24

    Article  Google Scholar 

  • de Torres JP, Bastarrika G, Wisnivesky JP, Alcaide AB, Campo A, Seijo LM et al (2007) Assessing the relationship between lung cancer risk and emphysema detected on low-dose CT of the chest. Chest 132:1932–1938

    Article  PubMed  Google Scholar 

  • Devillard R, Galvani S, Thiers JC, Guenet JL, Hannun Y, Bielawski J et al (2010) Stress-induced sphingolipid signaling: role of type-2 neutral sphingomyelinase in murine cell apoptosis and proliferation. PLoS One 5:e9826

    Article  PubMed  Google Scholar 

  • Ellis AG, Doherty MM, Walker F, Weinstock J, Nerrie M, Vitali A et al (2006) Preclinical analysis of the analinoquinazoline AG1478, a specific small molecule inhibitor of EGF receptor tyrosine kinase. Biochem Pharmacol 71:1422–1434

    Article  PubMed  CAS  Google Scholar 

  • Esme H, Cemek M, Sezer M, Saglam H, Demir A, Melek H et al (2008) High levels of oxidative stress in patients with advanced lung cancer. Respirology 13:112–116

    Article  PubMed  Google Scholar 

  • Filosto S, Fry W, Knowlton AA, Goldkorn T (2010) Neutral sphingomyelinase 2 (nSMase2) is a phosphoprotein regulated by calcineurin (PP2B). J Biol Chem 285:10213–10222

    Article  PubMed  CAS  Google Scholar 

  • Filosto S, Castillo S, Danielson A, Franzi L, Khan E, Kenyon N et al (2011a) Neutral sphingomyelinase 2: a novel target in cigarette smoke-induced apoptosis and lung injury. Am J Respir Cell Mol Biol 44:350–360

    Article  PubMed  CAS  Google Scholar 

  • Filosto S, Khan E, Tognon E, Becker C, Ashfaq M, Ravid T et al (2011b) EGF receptor exposed to oxidative stress acquires abnormal phosphorylation and aberrant activated conformation that impairs canonical dimerization. PLoS One 6:e23240

    Article  PubMed  CAS  Google Scholar 

  • Filosto S, Ashfaq M, Chung S, Fry W, Goldkorn T (2012a) Neutral sphingomyelinase 2 activity and protein stability are modulated by phosphorylation of five conserved serines. J Biol Chem 287:514–522

    Article  PubMed  CAS  Google Scholar 

  • Filosto S, Becker CR, Goldkorn T (2012b) Cigarette smoke induces aberrant EGF receptor activation that mediates lung cancer development and resistance to tyrosine kinase inhibitors. Mol Cancer Ther 11:795–804

    Article  PubMed  CAS  Google Scholar 

  • Foley TD, Petro LA, Stredny CM, Coppa TM (2007) Oxidative inhibition of protein phosphatase 2A activity: role of catalytic subunit disulfides. Neurochem Res 32:1957–1964

    Article  PubMed  CAS  Google Scholar 

  • Goldkorn T, Filosto S (2010) Lung injury and cancer: mechanistic insights into ceramide and EGFR signaling under cigarette smoke. Am J Respir Cell Mol Biol 43:259–268

    Article  PubMed  CAS  Google Scholar 

  • Goldkorn T, Balaban N, Shannon M, Chea V, Matsukuma K, Gilchrist D et al (1998) H2O2 acts on cellular membranes to generate ceramide signaling and initiate apoptosis in tracheobronchial epithelial cells. J Cell Sci 111:3209–3220

    PubMed  CAS  Google Scholar 

  • Goldkorn T, Ravid T, Khan EM (2005) Life and death decisions: ceramide generation and EGF receptor trafficking are modulated by oxidative stress. Antioxid Redox Signal 7:119–128

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Munoz A, Kong JY, Salh B, Steinbrecher UP (2004) Ceramide-1-phosphate blocks apoptosis through inhibition of acid sphingomyelinase in macrophages. J Lipid Res 45:99–105

    Article  PubMed  CAS  Google Scholar 

  • Grassme H, Jekle A, Riehle A, Schwarz H, Berger J, Sandhoff K et al (2001) CD95 signaling via ceramide-rich membrane rafts. J Biol Chem 276:20589–20596

    Article  PubMed  CAS  Google Scholar 

  • Gridelli C, Maione P, Bareschino MA, Schettino C, Sacco PC, Ambrosio R et al (2010) Erlotinib in the treatment of non-small cell lung cancer: current status and future developments. Anticancer Res 30:1301–1310

    PubMed  CAS  Google Scholar 

  • Gulbins E, Kolesnick R (2003) Raft ceramide in molecular medicine. Oncogene 22:7070–7077

    Article  PubMed  CAS  Google Scholar 

  • Hannun YA, Obeid LM (2011) Many ceramides. J Biol Chem 286:27855–27862

    Article  PubMed  CAS  Google Scholar 

  • Heering J, Weis N, Holeiter M, Neugart F, Staebler A, Fehm TN et al (2012) Loss of the ceramide transfer protein augments EGF receptor signaling in breast cancer. Cancer Res 72(11):2855–66

    Article  PubMed  CAS  Google Scholar 

  • Inokuchi J, Jimbo M, Momosaki K, Shimeno H, Nagamatsu A, Radin NS (1990) Inhibition of experimental metastasis of murine Lewis lung carcinoma by an inhibitor of glucosylceramide synthase and its possible mechanism of action. Cancer Res 50:6731–6737

    PubMed  CAS  Google Scholar 

  • Khan E, Heidinger J, Levy M, Lisanti M, Ravid T, Goldkorn T (2006) EGF receptor exposed to oxidative stress undergoes Src- and caveolin-1-dependent perinuclear trafficking. J Biol Chem 281:14486–14493

    Article  PubMed  CAS  Google Scholar 

  • Khan EM, Lanir R, Danielson AR, Goldkorn T (2008) EGF receptor exposed to cigarette smoke is aberrantly activated and undergoes perinuclear trafficking. FASEB J 22:910–917

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Chan R, Dankort DL, Zuo D, Najoukas M, Park M et al (2005) The c-Src tyrosine kinase associates with the catalytic domain of ErbB-2: implications for ErbB-2 mediated signaling and transformation. Oncogene 24:7599–7607

    Article  PubMed  CAS  Google Scholar 

  • Kim LC, Song L, Haura EB (2009a) Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol 6:587–595

    Article  PubMed  Google Scholar 

  • Kim VN, Han J, Siomi MC (2009b) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  PubMed  CAS  Google Scholar 

  • Kolesnick RN, Goni FM, Alonso A (2000) Compartmentalization of ceramide signaling: physical foundations and biological effects. J Cell Physiol 184:285–300

    Article  PubMed  CAS  Google Scholar 

  • Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17442–17452

    Article  PubMed  CAS  Google Scholar 

  • Kuebler WM, Yang Y, Samapati R, Uhlig S (2010) Vascular barrier regulation by PAF, ceramide, caveolae, and NO - an intricate signaling network with discrepant effects in the pulmonary and systemic vasculature. Cell Physiol Biochem 26:29–40

    Article  PubMed  CAS  Google Scholar 

  • Lavrentiadou SN, Chan C, Ravid T, Tsaba A, van der Vliet A, Rasooly R et al (2001) Ceramide-mediated apoptosis in lung epithelial cells is regulated by GSH. Am J Respir Cell Mol Biol 25:676–684

    Article  PubMed  CAS  Google Scholar 

  • Levy M, Castillo SS, Goldkorn T (2006) nSMase2 activation and trafficking are modulated by oxidative stress to induce apoptosis. Biochem Biophys Res Commun 344:900–905

    Article  PubMed  CAS  Google Scholar 

  • Levy M, Khan E, Careaga M, Goldkorn T (2009) Neutral sphingomyelinase 2 is activated by cigarette smoke to augment ceramide-induced apoptosis in lung cell death. Am J Physiol Lung Cell Mol Physiol 297:125–133

    Article  Google Scholar 

  • Liu X, Sempere LF, Galimberti F, Freemantle SJ, Black C, Dragnev KH et al (2009) Uncovering growth-suppressive MicroRNAs in lung cancer. Clin Cancer Res 15:1177–1183

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Sempere LF, Ouyang H, Memoli VA, Andrew AS, Luo Y et al (2010) MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest 120:1298–1309

    Article  PubMed  CAS  Google Scholar 

  • Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  PubMed  CAS  Google Scholar 

  • Maceyka M, Harikumar KB, Milstien S, Spiegel S (2012) Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol 22:50–60

    Article  PubMed  CAS  Google Scholar 

  • Marcotte R, Zhou L, Kim H, Roskelly CD, Muller WJ (2009) c-Src associates with ErbB2 through an interaction between catalytic domains and confers enhanced transforming potential. Mol Cell Biol 29:5858–5871

    Article  PubMed  CAS  Google Scholar 

  • Megha, London E (2004) Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J Biol Chem 279:9997–10004

    PubMed  CAS  Google Scholar 

  • Merrill AH Jr (2011) Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 111:6387–6422

    Article  PubMed  CAS  Google Scholar 

  • Minna JD, Gazdar AF, Sprang SR, Herz J (2004) Cancer. A bull’s eye for targeted lung cancer therapy. Science 304:1458–1461

    Article  PubMed  CAS  Google Scholar 

  • Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518

    Article  PubMed  CAS  Google Scholar 

  • Mitra P, Maceyka M, Payne SG, Lamour N, Milstien S, Chalfant CE et al (2007) Ceramide kinase regulates growth and survival of A549 human lung adenocarcinoma cells. FEBS Lett 581:735–740

    Article  PubMed  CAS  Google Scholar 

  • Morales A, Lee H, Goni FM, Kolesnick R, Fernandez-Checa JC (2007) Sphingolipids and cell death. Apoptosis 12:923–939

    Article  PubMed  CAS  Google Scholar 

  • Mountzios G, Fouret P, Soria JC (2008) Mechanisms of disease: signal transduction in lung carcinogenesis – a comparison of smokers and never-smokers. Nat Clin Pract Oncol 5:610–618

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay A, Saddoughi SA, Song P, Sultan I, Ponnusamy S, Senkal CE et al (2009) Direct interaction between the inhibitor 2 and ceramide via sphingolipid-protein binding is involved in the regulation of protein phosphatase 2A activity and signaling. FASEB J 23:751–763

    Article  PubMed  CAS  Google Scholar 

  • Mullen TD, Spassieva S, Jenkins RW, Kitatani K, Bielawski J, Hannun YA et al (2011) Selective knockdown of ceramide synthases reveals complex interregulation of sphingolipid metabolism. J Lipid Res 52:68–77

    Article  PubMed  CAS  Google Scholar 

  • Nikolova-Karakashian M, Karakashian A, Rutkute K (2008) Role of neutral sphingomyelinases in aging and inflammation. Subcell Biochem 49:469–486

    Article  PubMed  Google Scholar 

  • Nowak D, Antczak A, Krol M, Pietras T, Shariati B, Bialasiewicz P et al (1996) Increased content of H2O2 in the expired breath of cigarette smokers. Eur Respir J 9:652–657

    Article  PubMed  CAS  Google Scholar 

  • Ogretmen B, Schady D, Usta J, Wood R, Kraveka JM, Luberto C et al (2001) Role of ceramide in mediating the inhibition of telomerase activity in A549 human lung adenocarcinoma cells. J Biol Chem 276:24901–24910

    Article  PubMed  CAS  Google Scholar 

  • Oskouian B, Saba JD (2010) Cancer treatment strategies targeting sphingolipid metabolism. Adv Exp Med Biol 688:185–205

    Article  PubMed  CAS  Google Scholar 

  • Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    Article  PubMed  CAS  Google Scholar 

  • Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  • Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL et al (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA 107:6328–6333

    Article  PubMed  CAS  Google Scholar 

  • Ponnusamy S, Meyers-Needham M, Senkal CE, Saddoughi SA, Sentelle D, Selvam SP et al (2010) Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance. Future Oncol 6:1603–1624

    Article  PubMed  CAS  Google Scholar 

  • Ravid T, Sweeney C, Gee P, Carraway KRK, Goldkorn T (2002) EGF receptor activation under oxidative stress fails to promote c-Cbl mediated down regulation. J Biol Chem 12:12

    Google Scholar 

  • Ravid T, Tsaba A, Gee P, Rasooly R, Medina EA, Goldkorn T (2003) Ceramide accumulation precedes caspase-3 activation during apoptosis of A549 human lung adeno. cells. Am J Physiol Lung Cell Mol Physiol 284:L1082–1092

    PubMed  CAS  Google Scholar 

  • Rutkute K, Asmis RH, Nikolova-Karakashian MN (2007a) Regulation of neutral sphingomyelinase-2 by GSH: a new insight to the role of oxidative stress in aging-associated inflammation. J Lipid Res 48:2443–2452

    Article  PubMed  CAS  Google Scholar 

  • Rutkute K, Karakashian AA, Giltiay NV, Dobierzewska A, Nikolova-Karakashian MN (2007b) Aging in rat causes hepatic hyperresposiveness to IL-1beta which is mediated by nSMase2. Hepatology 46:1166–1176

    Article  PubMed  CAS  Google Scholar 

  • Schnitzer SE, Weigert A, Zhou J, Brune B (2009) Hypoxia enhances sphingosine kinase 2 activity and provokes sphingosine-1-phosphate-mediated chemoresistance in A549 lung cancer cells. Mol Cancer Res 7:393–401

    Article  PubMed  CAS  Google Scholar 

  • Shigematsu H, Gazdar AF (2006) Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int J Cancer 118:257–262

    Article  PubMed  CAS  Google Scholar 

  • Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476

    Article  PubMed  CAS  Google Scholar 

  • Stancevic B, Kolesnick R (2010) Ceramide-rich platforms in transmembrane signaling. FEBS Lett 584:1728–1740

    Article  PubMed  CAS  Google Scholar 

  • Sznajder JI, Fraiman A, Hall JB, Sanders W, Schmidt G, Crawford G et al (1989) Increased H2O2 in the expired breath of patients with acute hypoxemic respiratory failure. Chest 96:606–612

    Article  PubMed  CAS  Google Scholar 

  • Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247

    Article  PubMed  CAS  Google Scholar 

  • Uhlig S, Gulbins E (2008) Sphingolipids in the lungs. Am J Respir Crit Care Med 178:1100–1114

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S, Tanaka J, Ota T, Kondo R, Tanaka H, Kagamu H et al (2011) Clinical responses to EGFR-tyrosine kinase inhibitor retreatment in non-small cell lung cancer patients who benefited from prior effective gefitinib therapy: a retrospective analysis. BMC Cancer 11:1

    Article  PubMed  CAS  Google Scholar 

  • Weinstein IB (2002) Cancer. Addiction to oncogenes–the Achilles heal of cancer. Science 297:63–64

    Article  PubMed  CAS  Google Scholar 

  • Williams MD, Chance B (1983) Spontaneous chemiluminescence of human breath. Spectrum, lifetime, temporal distribution, and correlation with peroxide. J Biol Chem 258:3628–3631

    PubMed  CAS  Google Scholar 

  • Wu BX, Clarke CJ, Hannun YA (2010) Mammalian neutral sphingomyelinases: regulation and roles in cell signaling responses. Neuromolecular Med 12:320–330

    Article  PubMed  Google Scholar 

  • Wu JY, Wu SG, Yang CH, Chang YL, Chang YC, Hsu YC et al (2011) Comparison of gefitinib and erlotinib in advanced NSCLC and the effect of EGFR mutations. Lung Cancer 72:205–212

    Article  PubMed  Google Scholar 

  • Xu X, Bittman R, Duportail G, Heissler D, Vilcheze C, London E (2001) Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide. J Biol Chem 276:33540–33546

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Bando H, Takeuchi S, Kita K, Li Q, Wang W et al (2011) Genetically engineered humanized anti-ganglioside GM2 antibody against multiple organ metastasis produced by GM2-expressing small-cell lung cancer cells. Cancer Sci 102:2157–2163

    Article  PubMed  CAS  Google Scholar 

  • Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Yin J, Baumgartner W, Samapati R, Solymosi EA, Reppien E et al (2010) Platelet-activating factor reduces endothelial nitric oxide production: role of acid sphingomyelinase. Eur Respir J 36:417–427

    Article  PubMed  CAS  Google Scholar 

  • Yatabe Y (2010) EGFR mutations and the terminal respiratory unit. Cancer Metastasis Rev 29:23–36

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Li X, Becker KA, Gulbins E (2009) Ceramide-enriched membrane domains–structure and function. Biochim Biophys Acta 1788:178–183

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzipora Goldkorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Goldkorn, T., Chung, S., Filosto, S. (2013). Lung Cancer and Lung Injury: The Dual Role of Ceramide. In: Gulbins, E., Petrache, I. (eds) Sphingolipids in Disease. Handbook of Experimental Pharmacology, vol 216. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1511-4_5

Download citation

Publish with us

Policies and ethics