Skip to main content
  • 913 Accesses

Abstract

Hcy-thiolactone was discovered by serendipity in 1934 as a by-product of an early assay for the quantification of methionine in proteins [187]. The assay involves boiling with hydriodic acid (128 °C, 3 h). This causes demethylation of methionine with the formation of methyl iodide, whose quantitative recovery (99.5 ± 2.0 %) by absorption in alcoholic solution of silver nitrate was the basis of the methionine assay. The residue from methionine that remains in the acid has been identified by elemental analysis as Hcy-thiolactone. The recovery of Hcy-thiolactone from methionine digestion is also quantitative (97.0 ± 2.1 %) [187].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Butz LW, du Vigneaud V. The formation of homologue of cysteine by the decomposition of methionine with sulfuric acid. J Biol Chem. 1932;99:135–42.

    CAS  Google Scholar 

  2. Riegel B, Du Vigneaud V. The isolation of homocysteine and its conversion to a thiolactone. J Biol Chem. 1935;112:149–54.

    CAS  Google Scholar 

  3. Jakubowski H. Quality control in tRNA charging. Wiley Interdiscip Rev RNA. 2012;3(3):295–310.

    Article  PubMed  CAS  Google Scholar 

  4. Jakubowski H. Quality control in tRNA charging – editing of homocysteine. Acta Biochim Pol. 2011;58(2):149–63.

    PubMed  CAS  Google Scholar 

  5. Ebbing M, Bonaa KH, Arnesen E, Ueland PM, Nordrehaug JE, Rasmussen K, et al. Combined analyses and extended follow-up of two randomized controlled homocysteine-lowering B-vitamin trials. J Intern Med. 2010;268(4):367–82.

    Article  PubMed  CAS  Google Scholar 

  6. Smith AD, Smith SM, de Jager CA, Whitbread P, Johnston C, Agacinski G, et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One. 2010;5(9):e12244.

    Article  PubMed  CAS  Google Scholar 

  7. de Jager CA, Oulhaj A, Jacoby R, Refsum H, Smith AD. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. International journal of geriatric psychiatry. 2012;27(6):592–600.

    Article  PubMed  Google Scholar 

  8. Jakubowski H. Proofreading in vivo: editing of homocysteine by methionyl-tRNA synthetase in the yeast Saccharomyces cerevisiae. Embo J. 1991;10(3):593–8.

    PubMed  CAS  Google Scholar 

  9. Jakubowski H. The determination of homocysteine-thiolactone in biological samples. Anal Biochem. 2002;308(1):112–9.

    Article  PubMed  CAS  Google Scholar 

  10. Jakubowski H, Goldman E. Editing of errors in selection of amino acids for protein synthesis. Microbiological reviews. 1992;56(3):412–29.

    PubMed  CAS  Google Scholar 

  11. Sikora M, Jakubowski H. Homocysteine editing and growth inhibition in Escherichia coli. Microbiology. 2009;155(Pt 6):1858–65.

    Article  PubMed  CAS  Google Scholar 

  12. Jakubowski H. Molecular basis of homocysteine toxicity in humans. Cell Mol Life Sci. 2004;61(4):470–87.

    Article  PubMed  CAS  Google Scholar 

  13. Jakubowski H. Metabolism of homocysteine thiolactone in human cell cultures. Possible mechanism for pathological consequences of elevated homocysteine levels. Possible mechanism for pathological consequences of elevated homocysteine levels. J Biol Chem. 1997;272(3):1935–42.

    PubMed  CAS  Google Scholar 

  14. Jakubowski H, Zhang L, Bardeguez A, Aviv A. Homocysteine thiolactone and protein homocysteinylation in human endothelial cells: implications for atherosclerosis. Circ Res. 2000;87(1):45–51.

    Article  PubMed  CAS  Google Scholar 

  15. Jakubowski H. Translational incorporation of S-nitrosohomocysteine into protein. J Biol Chem. 2000;275(29):21813–6.

    Article  PubMed  CAS  Google Scholar 

  16. Jakubowski H. Translational accuracy of aminoacyl-tRNA synthetases: implications for atherosclerosis. J Nutr. 2001;131(11):2983S–7S.

    PubMed  CAS  Google Scholar 

  17. Jakubowski H. Homocysteine-thiolactone and S-nitroso-homocysteine mediate incorporation of homocysteine into protein in humans. Clin Chem Lab Med. 2003;41(11):1462–6.

    Article  PubMed  CAS  Google Scholar 

  18. Jakubowski H. Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels. FASEB J. 1999;13(15):2277–83.

    PubMed  CAS  Google Scholar 

  19. Jakubowski H. Homocysteine is a protein amino acid in humans. Implications for homocysteine-linked disease. J Biol Chem. 2002;277(34):30425–8.

    Article  PubMed  CAS  Google Scholar 

  20. Jakubowski H. Calcium-dependent human serum homocysteine thiolactone hydrolase. A protective mechanism against protein N-homocysteinylation. J Biol Chem. 2000;275(6):3957–62.

    Article  PubMed  CAS  Google Scholar 

  21. Jakubowski H: Accuracy of Aminoacyl-tRNA Synthetases: Proofreading of Amino Acids. In: The Aminoacyl-tRNA Synthetases. edn. Edited by Ibba M, Francklyn C, Cusack S. Georgetown, TX: Landes Bioscience/Eurekah.com 2005: 384–396.

    Google Scholar 

  22. Jakubowski H. Mechanism of the condensation of homocysteine thiolactone with aldehydes. Chemistry. 2006;12(31):8039–43.

    Article  PubMed  CAS  Google Scholar 

  23. Zimny J, Sikora M, Guranowski A, Jakubowski H. Protective mechanisms against homocysteine toxicity: the role of bleomycin hydrolase. J Biol Chem. 2006;281(32):22485–92.

    Article  PubMed  CAS  Google Scholar 

  24. Chwatko G, Boers GH, Strauss KA, Shih DM, Jakubowski H. Mutations in methylenetetrahydrofolate reductase or cystathionine beta-synthase gene, or a high-methionine diet, increase homocysteine thiolactone levels in humans and mice. Faseb J. 2007;21(8):1707–13.

    Article  PubMed  CAS  Google Scholar 

  25. Chwatko G, Jakubowski H. The determination of homocysteine-thiolactone in human plasma. Anal Biochem. 2005;337(2):271–7.

    Article  PubMed  CAS  Google Scholar 

  26. Chwatko G, Jakubowski H. Urinary excretion of homocysteine-thiolactone in humans. Clin Chem. 2005;51(2):408–15.

    Article  PubMed  CAS  Google Scholar 

  27. Glowacki R, Jakubowski H. Cross-talk between Cys34 and lysine residues in human serum albumin revealed by N-homocysteinylation. J Biol Chem. 2004;279(12):10864–71.

    Article  PubMed  CAS  Google Scholar 

  28. Stamler JS, Osborne JA, Jaraki O, Rabbani LE, Mullins M, Singel D, et al. Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen. J Clin Invest. 1993;91(1):308–18.

    Article  PubMed  CAS  Google Scholar 

  29. Lee JS, Kang Decker N, Chatterjee S, Yao J, Friedman S, Shah V. Mechanisms of nitric oxide interplay with Rho GTPase family members in modulation of actin membrane dynamics in pericytes and fibroblasts. Am J Pathol. 2005;166(6):1861–70.

    Article  PubMed  CAS  Google Scholar 

  30. Jakubowski H, Perla-Kajan J, Finnell RH, Cabrera RM, Wang H, Gupta S, et al. Genetic or nutritional disorders in homocysteine or folate metabolism increase protein N-homocysteinylation in mice. Faseb J. 2009;23(6):1721–7.

    Article  PubMed  CAS  Google Scholar 

  31. Jakubowski H, Boers GH, Strauss KA. Mutations in cystathionine {beta}-synthase or methylenetetrahydrofolate reductase gene increase N-homocysteinylated protein levels in humans. FASEB J. 2008;22(12):4071–6.

    Article  PubMed  CAS  Google Scholar 

  32. Kerins DM, Koury MJ, Capdevila A, Rana S, Wagner C. Plasma S-adenosylhomocysteine is a more sensitive indicator of cardiovascular disease than plasma homocysteine. The American journal of clinical nutrition. 2001;74(6):723–9.

    PubMed  CAS  Google Scholar 

  33. Chambers JC, Obeid OA, Kooner JS. Physiological increments in plasma homocysteine induce vascular endothelial dysfunction in normal human subjects. Arterioscler Thromb Vasc Biol. 1999;19(12):2922–7.

    Article  PubMed  CAS  Google Scholar 

  34. Jakubowski H, Goldman E. Synthesis of homocysteine thiolactone by methionyl-tRNA synthetase in cultured mammalian cells. FEBS Lett. 1993;317(3):237–40.

    Article  PubMed  CAS  Google Scholar 

  35. Jakubowski H. Homocysteine thiolactone: metabolic origin and protein homocysteinylation in humans. J Nutr. 2000;130(2S Suppl):377S–81S.

    PubMed  CAS  Google Scholar 

  36. Borowczyk K, Shih DM, Jakubowski H. Metabolism and neurotoxicity of homocysteine thiolactone in mice: evidence for a protective role of paraoxonase 1. Journal of Alzheimer's disease: JAD. 2012;30(2):225–31.

    PubMed  CAS  Google Scholar 

  37. Borowczyk K, Tisonczyk J, Jakubowski H. Metabolism and neurotoxicity of homocysteine thiolactone in mice: protective role of bleomycin hydrolase. Amino Acids. 2012;43(3):1339–48.

    Article  PubMed  CAS  Google Scholar 

  38. Donahue S, Struman JA, Gaull G. Arteriosclerosis due to homocyst (e) inemia. Failure to reproduce the model in weanling rabbits. Am J Pathol. 1974;77(2):167–3.

    PubMed  CAS  Google Scholar 

  39. Jakubowski H, Ambrosius WT, Pratt JH. Genetic determinants of homocysteine thiolactonase activity in humans: implications for atherosclerosis. FEBS Lett. 2001;491(1–2):35–9.

    Article  PubMed  CAS  Google Scholar 

  40. Jakubowski H: Biosynthesis and reactions of homocysteine thiolactone. In: Homocysteine in Health and Disease. edn. Edited by Jacobson D, Carmel R. Cambridge, UK: Cambridge University Press; 2001: 21–31.

    Google Scholar 

  41. Rosenquist TH, Ratashak SA, Selhub J. Homocysteine induces congenital defects of the heart and neural tube: effect of folic acid. Proc Natl Acad Sci U S A. 1996;93(26):15227–32.

    Article  PubMed  CAS  Google Scholar 

  42. Maestro de las Casas C, Epeldegui M, Tudela C, Varela-Moreiras G, Perez-Miguelsanz J: High exogenous homocysteine modifies eye development in early chick embryos. Birth Defects Res A Clin Mol Teratol 2003, 67(1):35–40.

    Google Scholar 

  43. Undas A, Perla J, Lacinski M, Trzeciak W, Kazmierski R, Jakubowski H. Autoantibodies against N-homocysteinylated proteins in humans: implications for atherosclerosis. Stroke. 2004;35(6):1299–304.

    Article  PubMed  CAS  Google Scholar 

  44. Baernstein HD. A modification of the method for determining methionine in proteins. J Biol Chem. 1934;106:451–6.

    CAS  Google Scholar 

  45. Jakubowski H. Facile syntheses of [35S]homocysteine-thiolactone, [35S]homocystine, [35S]homocysteine, and [S-nitroso-35S]homocysteine. Anal Biochem. 2007;370(1):124–6.

    Article  PubMed  CAS  Google Scholar 

  46. Racker E. Glutathione-homocystine transhydrogenase. J Biol Chem. 1955;217(2):867–74.

    PubMed  CAS  Google Scholar 

  47. Jakubowski H, Guranowski A. Metabolism of homocysteine-thiolactone in plants. J Biol Chem. 2003;278(9):6765–70.

    Article  PubMed  CAS  Google Scholar 

  48. Benesch RE, Benesch R. The Acid Strength of the -SH Group in Cysteine and Related Compounds. Journal of the American Chemical Society. 1955;77:5877–81.

    Article  CAS  Google Scholar 

  49. Reuben DM, Bruice TC. Reaction of thiol anions with benzene oxide and malachite green. Journal of the American Chemical Society. 1976;98(1):114–21.

    Article  CAS  Google Scholar 

  50. Jakubowski H. Proofreading in vivo. Editing of homocysteine by aminoacyl-tRNA synthetases in Escherichia coli. J Biol Chem. 1995;270(30):17672–3.

    PubMed  CAS  Google Scholar 

  51. Gao W, Goldman E, Jakubowski H. Role of carboxy-terminal region in proofreading function of methionyl-tRNA synthetase in Escherichia coli. Biochemistry. 1994;33(38):11528–35.

    Article  PubMed  CAS  Google Scholar 

  52. Wolfenden R. The Mechanism of Hydrolysis of Amino Acyl Rna. Biochemistry. 1963;2:1090–2.

    Article  PubMed  CAS  Google Scholar 

  53. Schuber F, Pinck M. On the chemical reactivity of aminoacyl-tRNA ester bond. I. Influence of pH and nature of the acyl group on the rate of hydrolysis. Biochimie. 1974;56(3):383–90.

    Article  PubMed  CAS  Google Scholar 

  54. Jakubowski H. Proofreading in vivo: editing of homocysteine by methionyl-tRNA synthetase in Escherichia coli. Proc Natl Acad Sci U S A. 1990;87(12):4504–8.

    Article  PubMed  CAS  Google Scholar 

  55. Dudman NP, Hicks C, Lynch JF, Wilcken DE, Wang J. Homocysteine thiolactone disposal by human arterial endothelial cells and serum in vitro. Arterioscler Thromb. 1991;11(3):663–70.

    Article  PubMed  CAS  Google Scholar 

  56. Jakubowski H. Aminoacylation of coenzyme A and pantetheine by aminoacyl-tRNA synthetases: possible link between noncoded and coded peptide synthesis. Biochemistry. 1998;37(15):5147–53.

    Article  PubMed  CAS  Google Scholar 

  57. Jakubowski H: Facile syntheses of [(35)S]homocysteine-thiolactone, [(35)S]homocystine, [(35)S]homocysteine, and [S-nitroso-(35)S]homocysteine. Anal Biochem 2007.

    Google Scholar 

  58. Stekol JA. Preparation and determination of sulfur amino acids and related compounds. Methods in enzymology. 1957;3:578–600.

    Article  Google Scholar 

  59. du Vigneaud V, Patterson WI, Hunt M. Opening of the ring of the thiolactone of homocysteine. J Biol Chem. 1938;126:217–31.

    Google Scholar 

  60. Benesch R, Benesch RE. Formation 0of peptide bonds br aminoalysis of homocysteine thiolactones. Journal of the American Chemical Society. 1956;78:618–22.

    Article  Google Scholar 

  61. Abadi DM, Wilcox PE. Chemical derivatives of alpha-chymotrypsinogen. III. Reaction with N-acetyl-Dl-homocysteine thiolactone. The Journal of biological chemistry. 1960;235:396–404.

    PubMed  CAS  Google Scholar 

  62. Benesch R, Benesch RE. Thiolation of Proteins. Proc Natl Acad Sci U S A. 1958;44(9):848–53.

    Article  PubMed  CAS  Google Scholar 

  63. Hough DW, Shall S. Inhibition of enzymically active N-acetyl-homocysteinyl-ribonuclease by silver ions. FEBS letters. 1970;8(5):243–6.

    Article  PubMed  CAS  Google Scholar 

  64. Leanza WJ, Chupak LS, Tolman RL, Marburg S. Acidic derivatives of homocysteine thiolactone: utility as anionic linkers. Bioconjugate chemistry. 1992;3(6):514–8.

    Article  PubMed  CAS  Google Scholar 

  65. Lundeberg P, Lynd NA, Zhang Y, Zeng X, Krogstad DV, Paffen T, et al. ph-triggered self-assembly of biocompatible histamine-functionalized triblock copolymers. Soft Matter. 2013;9(1):82–9.

    Article  CAS  Google Scholar 

  66. Kumar A, Advani S, Dawar H, Talwar GP. A simple method for introducing a thiol group at the 5'-end of synthetic oligonucleotides. Nucleic Acids Res. 1991;19(16):4561.

    Article  PubMed  CAS  Google Scholar 

  67. Jakubowski H, Fersht AR. Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases. Nucleic Acids Res. 1981;9(13):3105–17.

    Article  PubMed  CAS  Google Scholar 

  68. Refsum H, Ueland PM, Nygard O, Vollset SE. Homocysteine and cardiovascular disease. Annual review of medicine. 1998;49:31–62.

    Article  PubMed  CAS  Google Scholar 

  69. Marczak L, Sikora M, Stobiecki M, Jakubowski H. Analysis of site-specific N-homocysteinylation of human serum albumin in vitro and in vivo using MALDI-ToF and LC-MS/MS mass spectrometry. J Proteomics. 2011;74(7):967–74.

    Article  PubMed  CAS  Google Scholar 

  70. Sikora M, Marczak L, Twardowski T, Stobiecki M, Jakubowski H. Direct monitoring of albumin lysine-525 N-homocysteinylation in human serum by liquid chromatography/mass spectrometry. Analytical biochemistry. 2010;405(1):132–4.

    Article  PubMed  CAS  Google Scholar 

  71. Zang T, Dai S, Chen D, Lee BW, Liu S, Karger BL, et al. Chemical methods for the detection of protein N-homocysteinylation via selective reactions with aldehydes. Anal Chem. 2009;81(21):9065–71.

    Article  PubMed  CAS  Google Scholar 

  72. Sikora M, Marczak, L., Suszynska-Zajczyk, J., Jakubowski, H.: Monitoring site-specific N-homocysteinylation in fibrinogen in vitro and in vivo as a potential marker of thrombosis in CBS-deficient patients. In: 22nd International Fibrinogen Workshop: July 4, 2012 2012; Brighton, UK: International Fibrinogen Research Society (IFRS); 2012: 94.

    Google Scholar 

  73. Liu G, Nellaiappan K, Kagan HM. Irreversible inhibition of lysyl oxidase by homocysteine thiolactone and its selenium and oxygen analogues. Implications for homocystinuria. J Biol Chem. 1997;272(51):32370–7.

    Article  PubMed  CAS  Google Scholar 

  74. Deitrich RA, Petersen D, Vasiliou V: Removal of acetaldehyde from the body. Novartis Foundation symposium 2007, 285:23–40; discussion 40–51, 198–199.

    Google Scholar 

  75. Andrades ME, Lorenzi R, Berger M, Guimaraes JA, Moreira JC, Dal-Pizzol F. Glycolaldehyde induces fibrinogen post-translational modification, delay in clotting and resistance to enzymatic digestion. Chemico-biological interactions. 2009;180(3):478–84.

    Article  PubMed  CAS  Google Scholar 

  76. Wriston Jr JC, Mackenzie CG. Synthesis and metabolism of 1, 3-thiazane-4-carboxylic acid derived from formaldehyde and homocysteine. J Biol Chem. 1957;225(2):607–13.

    PubMed  CAS  Google Scholar 

  77. Glowacki R, Bald E, Jakubowski H. An on-column derivatization method for the determination of homocysteine-thiolactone and protein N-linked homocysteine. Amino Acids. 2011;41(1):187–94.

    Article  PubMed  CAS  Google Scholar 

  78. Senger B, Despons L, Walter P, Jakubowski H, Fasiolo F. Yeast cytoplasmic and mitochondrial methionyl-tRNA synthetases: two structural frameworks for identical functions. Journal of molecular biology. 2001;311(1):205–16.

    Article  PubMed  CAS  Google Scholar 

  79. Cohn VH, Lyle J. A fluorometric assay for glutathione. Anal Biochem. 1966;14(3):434–40.

    Article  PubMed  CAS  Google Scholar 

  80. Mukai Y, Togawa T, Suzuki T, Ohata K, Tanabe S. Determination of homocysteine thiolactone and homocysteine in cell cultures using high-performance liquid chromatography with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;767(2):263–8.

    Article  PubMed  CAS  Google Scholar 

  81. Togawa T, Mukai Y, Ohata K, Suzuki T, Tanabe S. Measurement of homocysteine thiolactone hydrolase activity using high-performance liquid chromatography with fluorescence detection and polymorphisms of paraoxonase in normal human serum. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;819(1):67–72.

    Article  PubMed  CAS  Google Scholar 

  82. Daneshvar P, Yazdanpanah M, Cuthbert C, Cole DE. Quantitative assay of plasma homocysteine thiolactone by gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2003;17(4):358–62.

    Article  PubMed  CAS  Google Scholar 

  83. Chen SJ, Chang HT. Nile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation. Anal Chem. 2004;76(13):3727–34.

    Article  PubMed  CAS  Google Scholar 

  84. Chen X, Zhou Y, Peng X, Yoon J. Fluorescent and colorimetric probes for detection of thiols. Chemical Society reviews. 2010;39(6):2120–35.

    Article  PubMed  CAS  Google Scholar 

  85. Lim II, Ip W, Crew E, Njoki PN, Mott D, Zhong CJ, et al. Homocysteine-mediated reactivity and assembly of gold nanoparticles. Langmuir. 2007;23(2):826–33.

    Article  PubMed  CAS  Google Scholar 

  86. Huang CC, Tseng WL. Role of fluorosurfactant-modified gold nanoparticles in selective detection of homocysteine thiolactone: remover and sensor. Anal Chem. 2008;80(16):6345–50.

    Article  PubMed  CAS  Google Scholar 

  87. Reynolds NM, Lazazzera BA, Ibba M. Cellular mechanisms that control mistranslation. Nat Rev Microbiol. 2010;8(12):849–56.

    Article  PubMed  CAS  Google Scholar 

  88. Fersht A. Structure and mechanism in protein science. New York: WH Freeman and Company; 2000.

    Google Scholar 

  89. Old JM, Jones DS. The aminoacylation of transfer ribonucleic acid. Recognition of methionine by Escherichia coli methionyl-transfer ribonucleic acid synthetase. Biochem J. 1977;165(2):367–73.

    PubMed  CAS  Google Scholar 

  90. Fersht AR, Dingwall C. An editing mechanism for the methionyl-tRNA synthetase in the selection of amino acids in protein synthesis. Biochemistry. 1979;18(7):1250–6.

    Article  PubMed  CAS  Google Scholar 

  91. Jakubowski H. Aminoacyl thioester chemistry of class II aminoacyl-tRNA synthetases. Biochemistry. 1997;36(37):11077–85.

    Article  PubMed  CAS  Google Scholar 

  92. Zubay J: Biochemistry, 4th edition: Wm. C. Brown Publishers; 1998.

    Google Scholar 

  93. Lewin B. Genes VIII. New York: Oxford University Press, Inc.; 2004.

    Google Scholar 

  94. Jakubowski H: Synthesis of homocysteine thiolactone in normal and malignant cells. In: Homocysteine Metabolism: From Basic Science to Clinical Medicine. edn. Edited by Rosenberg IH, Graham I, Ueland PM, Refsum H. Norwell, MA: Kluwer Academic Publishers; 1997: 157–165.

    Google Scholar 

  95. Kim HY, Ghosh G, Schulman LH, Brunie S, Jakubowski H. The relationship between synthetic and editing functions of the active site of an aminoacyl-tRNA synthetase. Proc Natl Acad Sci U S A. 1993;90(24):11553–7.

    Article  PubMed  CAS  Google Scholar 

  96. Serre L, Verdon G, Choinowski T, Hervouet N, Risler JL, Zelwer C. How methionyl-tRNA synthetase creates its amino acid recognition pocket upon L-methionine binding. Journal of molecular biology. 2001;306(4):863–76.

    Article  PubMed  CAS  Google Scholar 

  97. Jakubowski H. The synthetic/editing active site of an aminoacyl-tRNA synthetase: evidence for binding of thiols in the editing subsite. Biochemistry. 1996;35(25):8252–9.

    Article  PubMed  CAS  Google Scholar 

  98. Nadarajan SP, Mathew S, Deepankumar K, Yun H. An in silico approach to evaluate the polyspecificity of methionyl-tRNA synthetases. Journal of molecular graphics & modelling. 2012;39C:79–86.

    Google Scholar 

  99. Crepin T, Schmitt E, Mechulam Y, Sampson PB, Vaughan MD, Honek JF, et al. Use of analogues of methionine and methionyl adenylate to sample conformational changes during catalysis in Escherichia coli methionyl-tRNA synthetase. Journal of molecular biology. 2003;332(1):59–72.

    Article  PubMed  CAS  Google Scholar 

  100. Jakubowski H. Proofreading in trans by an aminoacyl-tRNA synthetase: a model for single site editing by isoleucyl-tRNA synthetase. Nucleic Acids Res. 1996;24(13):2505–10.

    Article  PubMed  CAS  Google Scholar 

  101. Jakubowski H. Synthesis of cysteine-containing dipeptides by aminoacyl-tRNA synthetases. Nucleic Acids Res. 1995;23(22):4608–15.

    Article  PubMed  CAS  Google Scholar 

  102. Jakubowski H. Amino acid selectivity in the aminoacylation of coenzyme A and RNA minihelices by aminoacyl-tRNA synthetases. J Biol Chem. 2000;275(45):34845–8.

    Article  PubMed  CAS  Google Scholar 

  103. Mocibob M, Ivic N, Bilokapic S, Maier T, Luic M, Ban N, et al. Homologs of aminoacyl-tRNA synthetases acylate carrier proteins and provide a link between ribosomal and nonribosomal peptide synthesis. Proc Natl Acad Sci U S A. 2010;107(33):14585–90.

    Article  PubMed  CAS  Google Scholar 

  104. Jarvis D, Bondanszky M, du Vigneaud V. The synthesis of 1-(hemi-homocysteine)-oxytocin and a study of some of its pharmacological properties. Journal of the American Chemical Society. 1961;83:4780–4.

    Article  CAS  Google Scholar 

  105. Daruzzaman A, Clifton IJ, Adlington RM, Baldwin JE, Rutledge PJ: The crystal structure of isopenicillin N synthase with a dipeptide substrate analogue. Arch Biochem Biophys 2012.

    Google Scholar 

  106. Lima B, Forrester MT, Hess DT, Stamler JS. S-nitrosylation in cardiovascular signaling. Circ Res. 2010;106(4):633–46.

    Article  PubMed  CAS  Google Scholar 

  107. Perla-Kajan J, Jakubowski H. Paraoxonase 1 protects against protein N-homocysteinylation in humans. FASEB J. 2010;24(3):931–6.

    Article  PubMed  CAS  Google Scholar 

  108. Suszynska J, Tisonczyk J, Lee HG, Smith MA, Jakubowski H. Reduced homocysteine-thiolactonase activity in Alzheimer's disease. J Alzheimers Dis. 2010;19(4):1177–83.

    PubMed  CAS  Google Scholar 

  109. Marsillach J, Mackness B, Mackness M, Riu F, Beltran R, Joven J, et al. Immunohistochemical analysis of paraoxonases-1, 2, and 3 expression in normal mouse tissues. Free radical biology & medicine. 2008;45(2):146–57.

    Article  CAS  Google Scholar 

  110. Shih DM, Gu L, Xia YR, Navab M, Li WF, Hama S, et al. Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature. 1998;394(6690):284–7.

    Article  PubMed  CAS  Google Scholar 

  111. Bhattacharyya T, Nicholls SJ, Topol EJ, Zhang RL, Yang X, Schmitt D, et al. Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. Jama-Journal of the American Medical Association. 2008;299(11):1265–76.

    Article  CAS  Google Scholar 

  112. Bayrak A, Bayrak T, Tokgozoglu SL, Volkan-Salanci B, Deniz A, Yavuz B, et al. Serum PON-1 activity but not Q192R polymorphism is related to the extent of atherosclerosis. Journal of atherosclerosis and thrombosis. 2012;19(4):376–84.

    Article  PubMed  CAS  Google Scholar 

  113. Jakubowski H: Paraoxonase 1 (PON1), A Junction between the Metabolisms of Homocysteine and Lipids. In: Proteins and Cell Regulation. Volume 6, edn. Edited by Mackness B, Mackness, M., Aviral., M., Paragh, G. Dordrecht, The Netherlands: Springer; 2008: 87–102.

    Google Scholar 

  114. Perla-Kajan J, Jakubowski H. Paraoxonase 1 and homocysteine metabolism. Amino Acids. 2012;43(4):1405–17.

    Article  PubMed  CAS  Google Scholar 

  115. Dantoine TF, Debord J, Merle L, Lacroix-Ramiandrisoa H, Bourzeix L, Charmes JP. Paraoxonase 1 activity: a new vascular marker of dementia? Annals of the New York Academy of Sciences. 2002;977:96–101.

    Article  PubMed  CAS  Google Scholar 

  116. Paragh G, Balla P, Katona E, Seres I, Egerhazi A, Degrell I. Serum paraoxonase activity changes in patients with Alzheimer's disease and vascular dementia. Eur Arch Psychiatry Clin Neurosci. 2002;252(2):63–7.

    Article  PubMed  Google Scholar 

  117. Erlich PM, Lunetta KL, Cupples LA, Abraham CR, Green RC, Baldwin CT, Farrer LA: Serum paraoxonase activity is associated with variants in the PON gene cluster and risk of Alzheimer disease. Neurobiol Aging 2012, 33(5):1015 e1017-1023.

    Google Scholar 

  118. Lacinski M, Skorupski W, Cieslinski A, Sokolowska J, Trzeciak WH, Jakubowski H. Determinants of homocysteine-thiolactonase activity of the paraoxonase-1 (PON1) protein in humans. Cell Mol Biol (Noisy-le-grand). 2004;50(8):885–93.

    CAS  Google Scholar 

  119. Wehr H, Bednarska-Makaruk M, Graban A, Lipczynska-Lojkowska W, Rodo M, Bochynska A, et al. Paraoxonase activity and dementia. J Neurol Sci. 2009;283(1–2):107–8.

    Article  PubMed  CAS  Google Scholar 

  120. Harel M, Aharoni A, Gaidukov L, Brumshtein B, Khersonsky O, Meged R, et al. Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nature structural & molecular biology. 2004;11(5):412–9.

    Article  CAS  Google Scholar 

  121. Ben-David M, Elias M, Filippi JJ, Dunach E, Silman I, Sussman JL, et al. Catalytic versatility and backups in enzyme active sites: the case of serum paraoxonase 1. Journal of molecular biology. 2012;418(3–4):181–96.

    Article  PubMed  CAS  Google Scholar 

  122. Jarvik GP, Hatsukami TS, Carlson C, Richter RJ, Jampsa R, Brophy VH, et al. Paraoxonase activity, but not haplotype utilizing the linkage disequilibrium structure, predicts vascular disease. Arterioscler Thromb Vasc Biol. 2003;23(8):1465–71.

    Article  PubMed  CAS  Google Scholar 

  123. Jarvik GP, Rozek LS, Brophy VH, Hatsukami TS, Richter RJ, Schellenberg GD, et al. Paraoxonase (PON1) phenotype is a better predictor of vascular disease than is PON1(192) or PON1(55) genotype. Arterioscler Thromb Vasc Biol. 2000;20(11):2441–7.

    Article  PubMed  CAS  Google Scholar 

  124. Bayrak A, Bayrak T, Demirpence E, Kilinc K. Differential hydrolysis of homocysteine thiolactone by purified human serum (192)Q and (192)R PON1 isoenzymes. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879(1):49–55.

    Article  PubMed  CAS  Google Scholar 

  125. Mackness B, Davies GK, Turkie W, Lee E, Roberts DH, Hill E, et al. Paraoxonase status in coronary heart disease: are activity and concentration more important than genotype? Arterioscler Thromb Vasc Biol. 2001;21(9):1451–7.

    Article  PubMed  CAS  Google Scholar 

  126. Domagała TB, Łacinski M, Trzeciak WH, Mackness B, Mackness MI, Jakubowski H. The correlation of homocysteine-thiolactonase activity of the paraoxonase (PON1) protein with coronary heart disease status. Cell Mol Biol (Noisy-le-grand). 2006;52(5):4–10.

    Google Scholar 

  127. Robert K, Chasse JF, Santiard-Baron D, Vayssettes C, Chabli A, Aupetit J, et al. Altered gene expression in liver from a murine model of hyperhomocysteinemia. J Biol Chem. 2003;278(34):31504–11.

    Article  PubMed  CAS  Google Scholar 

  128. Lazo JS, Humphreys CJ. Lack of metabolism as the biochemical basis of bleomycin-induced pulmonary toxicity. Proc Natl Acad Sci U S A. 1983;80(10):3064–8.

    Article  PubMed  CAS  Google Scholar 

  129. Schwartz DR, Homanics GE, Hoyt DG, Klein E, Abernethy J, Lazo JS. The neutral cysteine protease bleomycin hydrolase is essential for epidermal integrity and bleomycin resistance. Proc Natl Acad Sci U S A. 1999;96(8):4680–5.

    Article  PubMed  CAS  Google Scholar 

  130. Takeda A, Higuchi D, Yamamoto T, Nakamura Y, Masuda Y, Hirabayashi T, et al. Purification and characterization of bleomycin hydrolase, which represents a new family of cysteine proteases, from rat skin. J Biochem (Tokyo). 1996;119(1):29–36.

    Article  CAS  Google Scholar 

  131. Kamata Y, Itoh Y, Kajiya A, Karasawa S, Sakatani C, Takekoshi S, et al. Quantification of neutral cysteine protease bleomycin hydrolase and its localization in rat tissues. J Biochem (Tokyo). 2007;141(1):69–76.

    Article  CAS  Google Scholar 

  132. Nishimura C, Tanaka N, Suzuki H, Tanaka N. Purification of bleomycin hydrolase with a monoclonal antibody and its characterization. Biochemistry. 1987;26(6):1574–8.

    Article  PubMed  CAS  Google Scholar 

  133. Sebti SM, Mignano JE, Jani JP, Srimatkandada S, Lazo JS. Bleomycin hydrolase: molecular cloning, sequencing, and biochemical studies reveal membership in the cysteine proteinase family. Biochemistry. 1989;28(16):6544–8.

    Article  PubMed  CAS  Google Scholar 

  134. Bromme D, Rossi AB, Smeekens SP, Anderson DC, Payan DG. Human bleomycin hydrolase: molecular cloning, sequencing, functional expression, and enzymatic characterization. Biochemistry. 1996;35(21):6706–14.

    Article  PubMed  CAS  Google Scholar 

  135. Zheng W, Johnston SA, Joshua-Tor L. The unusual active site of Gal6/bleomycin hydrolase can act as a carboxypeptidase, aminopeptidase, and peptide ligase. Cell. 1998;93(1):103–9.

    Article  PubMed  CAS  Google Scholar 

  136. Niemer I, Muller G, Strobel G, Bandlow W. Bleomycin hydrolase (Blh1p), a multi-sited thiol protease in search of a distinct physiological role. Current genetics. 1997;32(1):41–51.

    Article  PubMed  CAS  Google Scholar 

  137. Okamura Y, Nomoto S, Hayashi M, Hishida M, Nishikawa Y, Yamada S, et al. Identification of the bleomycin hydrolase gene as a methylated tumor suppressor gene in hepatocellular carcinoma using a novel triple-combination array method. Cancer Lett. 2011;312(2):150–7.

    Article  PubMed  CAS  Google Scholar 

  138. Kajiya A, Kaji H, Isobe T, Takeda A. Processing of amyloid beta-peptides by neutral cysteine protease bleomycin hydrolase. Protein and peptide letters. 2006;13(2):119–23.

    Article  PubMed  CAS  Google Scholar 

  139. Papassotiropoulos A, Bagli M, Jessen F, Frahnert C, Rao ML, Maier W, et al. Confirmation of the association between bleomycin hydrolase genotype and Alzheimer's disease. Molecular psychiatry. 2000;5(2):213–5.

    Article  PubMed  CAS  Google Scholar 

  140. Lefterov IM, Koldamova RP, Lefterova MI, Schwartz DR, Lazo JS. Cysteine 73 in bleomycin hydrolase is critical for amyloid precursor protein processing. Biochem Biophys Res Commun. 2001;283(4):994–9.

    Article  PubMed  CAS  Google Scholar 

  141. Kajiya A, Kaji H, Isobe T, Takeda A. Processing of amyloid beta-peptides by neutral cysteine protease bleomycin hydrolase. Protein and Peptide Letters. 2006;13(2):119–23.

    Article  PubMed  CAS  Google Scholar 

  142. Ratovitski T, Chighladze E, Waldron E, Hirschhorn RR, Ross CA. Cysteine proteases bleomycin hydrolase and cathepsin Z mediate N-terminal proteolysis and toxicity of mutant huntingtin. The Journal of biological chemistry. 2011;286(14):12578–89.

    Article  PubMed  CAS  Google Scholar 

  143. Kamata Y, Maejima H, Watarai A, Saito N, Katsuoka K, Takeda A, et al. Expression of bleomycin hydrolase in keratinization disorders. Arch Dermatol Res. 2012;304(1):31–8.

    Article  PubMed  CAS  Google Scholar 

  144. Kamata Y, Taniguchi A, Yamamoto M, Nomura J, Ishihara K, Takahara H, et al. Neutral cysteine protease bleomycin hydrolase is essential for the breakdown of deiminated filaggrin into amino acids. The Journal of biological chemistry. 2009;284(19):12829–36.

    Article  PubMed  CAS  Google Scholar 

  145. O'Farrell PA, Gonzalez F, Zheng W, Johnston SA, Joshua-Tor L. Crystal structure of human bleomycin hydrolase, a self-compartmentalizing cysteine protease. Structure. 1999;7(6):619–27.

    Article  PubMed  Google Scholar 

  146. van Guldener C, Stehouwer CD. Homocysteine metabolism in renal disease. Clin Chem Lab Med. 2003;41(11):1412–7.

    Article  PubMed  Google Scholar 

  147. Gu W, Lu J, Yang G, Dou J, Mu Y, Meng J, et al. Plasma homocysteine thiolactone associated with risk of macrovasculopathy in Chinese patients with type 2 diabetes mellitus. Adv Ther. 2008;25(9):914–24.

    Article  PubMed  CAS  Google Scholar 

  148. Reuben DM, Bruice TC. Reaction of thiol anions with benzene oxide and malachite green. J Am Chem Soc. 1976;98(1):114–21.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Jakubowski, H. (2013). Homocysteine-Thiolactone. In: Homocysteine in Protein Structure/Function and Human Disease. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1410-0_3

Download citation

Publish with us

Policies and ethics