Skip to main content

Concept of Robotic Gamma Knife Microradiosurgery and Results of Its Clinical Application in Benign Skull Base Tumors

  • Conference paper
  • First Online:
Gamma Knife Neurosurgery in the Management of Intracranial Disorders

Abstract

The availability of advanced computer-aided robotized devices for the Gamma Knife (i.e., an automatic positioning system and PerfeXion) resulted in significant changes in radiosurgical treatment strategy. The possibility of applying irradiation precisely and the significantly improved software for treatment planning led to the development of the original concept of robotic Gamma Knife microradiosurgery, which is comprised of the following: (1) precise irradiation of the lesion with regard to conformity and selectivity; (2) intentional avoidance of excessive irradiation of functionally important anatomical structures, particularly cranial nerves, located both within the target and in its vicinity; (3) delivery of sufficient radiation energy to the tumor with a goal of shrinking it while keeping the dose at the margins low enough to prevent complications. Realization of such treatment principles requires detailed evaluation of the microanatomy of the target area, which is achieved with an advanced neuroimaging protocol. From 2003, we applied the described microradiosurgical concept in our clinic for patients with benign skull base tumors. Overall, 75 % of neoplasms demonstrated shrinkage, and 47 % showed ≥50 % and more volume reduction. Treatment-related complications were encountered in only 6 % of patients and were mainly related to transient cranial nerve palsy. Just 2 % of neoplasms showed regrowth after irradiation. In conclusion, applying the microradiosurgical principles based on advanced neuroimaging and highly precise treatment planning is beneficial for patients, providing a high rate of tumor shrinkage and a low morbidity rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davidson L, Zada G, Yu C, Petrovich Z, Pagnini PG, Zee CS, Giannotta SL, Zelman V, Apuzzo MLJ (2009) Delayed toxicity from gamma knife radiosurgery to lesions in or adjacent to the brainstem. J Clin Neurosci 16:1139–1147

    Article  PubMed  Google Scholar 

  2. Flickinger JC (2002) Radiobiological and dosimetric considerations in stereotactic radiosurgery. In: Pollock BE (ed) Contemporary radiosurgery: technique and evaluation. Futura, Armonk, pp 37–52

    Google Scholar 

  3. Ganz JC (2011) Gamma Knife neurosurgery. Springer, Wien, pp 101–102

    Book  Google Scholar 

  4. Ganz JC, Reda WA, Abdelkarim K (2009) Gamma Knife surgery of large meningiomas: early response to treatment. Acta Neurochir (Wien) 151:1–8

    Article  CAS  Google Scholar 

  5. Ganz JC, Reda WA, Abdelkarim K (2009) Adverse radiation effects after Gamma Knife surgery in relation to dose and volume. Acta Neurochir (Wien) 151:9–19

    Article  CAS  Google Scholar 

  6. Hayashi M, Taira T, Chernov M, Fukuoka S, Liscak R, Yu CP, Ho RTK, Regis J, Katayama Y, Kawakami Y, Hori T (2002) Gamma knife surgery for cancer pain – pituitary gland – stalk ablation: a multicenter prospective protocol since 2002. J Neurosurg 97(Suppl):433–437

    PubMed  Google Scholar 

  7. Hayashi M, Chernov M, Izawa M, Iseki H, Hori T, Takakura K (2003) Robotized micro Gamma Knife surgery for 21st century. In: The 12th annual meeting of the Japanese Society of Stereotactic Radiosurgery: program and abstracts, Kyoto, Jun 21–22, 2003, p 35 (in Japanese)

    Google Scholar 

  8. Hayashi M, Taira T, Ochiai T, Chernov M, Takasu Y, Izawa M, Kouyama N, Tomida M, Tokumaru O, Katayama Y, Kawakami Y, Hori T, Takakura K (2005) Gamma knife surgery of the pituitary: new treatment for thalamic pain syndrome. J Neurosurg 102(Suppl):38–41

    Article  PubMed  Google Scholar 

  9. Hayashi M, Ochiai T, Murata N, Nakaya K, Izawa M, Chernov M, Hori T, Regis J, Takakura K (2006) Gamma knife surgery for essential trigeminal neuralgia: advantages in new treatment strategy with robotized micro-radiosurgery. In: Kondziolka D (ed) Radiosurgery, vol 6. Karger, Basel, pp 260–267

    Chapter  Google Scholar 

  10. Hayashi M, Ochiai T, Nakaya K, Chernov M, Tamura N, Maruyama T, Yomo S, Izawa M, Hori T, Takakura K, Regis J (2006) Current treatment strategy for vestibular schwannoma: image-guided robotic microradiosurgery. J Neurosurg 105(Suppl):5–11

    PubMed  Google Scholar 

  11. Hayashi M, Ochiai T, Nakaya K, Chernov M, Tamura N, Yomo S, Izawa M, Hori T, Takakura K, Regis J (2006) Image-guided microradiosurgery for skull base tumors: advantages of using gadolinium-enhanced constructive interference in steady-state imaging. J Neurosurg 105(Suppl):12–17

    PubMed  Google Scholar 

  12. Hayashi M, Tamura N, Maruyama T, Nakaya K, Ochiai T, Chernov M, Yomo S, Anami H, Izawa M, Ono Y, Okada Y, Hori T, Takakura K (2010) Current treatment strategy of Gamma Knife surgery for vestibular schwannoma: image-guided and robotized microradiosurgery. In: McDermott MW (ed) Radiosurgery, vol 7. Karger, Basel, pp 175–188

    Chapter  Google Scholar 

  13. Hayashi M, Tamura N, Nakaya K, Ochiai T, Chernov M, Yomo S, Anami H, Izawa M, Okada Y, Ono Y, Hori T, Takakura K (2010) Image-guided micro Gamma Knife surgery for skull-base tumors to avoid underlying dysfunction of the surrounding vital structures using CISS with gadolinium enhancement. In: McDermott MW (ed) Radiosurgery, vol 7. Karger, Basel, pp 227–236

    Chapter  Google Scholar 

  14. Hayashi M, Chernov M, Tamura N, Nagai M, Yomo S, Ochiai T, Amano K, Izawa M, Hori T, Muragaki Y, Iseki H, Okada Y, Takakura K (2010) Gamma Knife robotic microradiosurgery of pituitary adenomas invading the cavernous sinus: treatment concept and results in 89 cases. J Neurooncol 98:185–194

    Article  PubMed  Google Scholar 

  15. Hayashi M, Chernov M, Tamura N, Yomo S, Ochiai T, Nagai M, Tamura M, Izawa M, Muragaki Y, Iseki H, Okada Y, Takakura K (2010) Gamma Knife surgery for abducent nerve schwannoma: report of 4 cases. J Neurosurg 113(Suppl):136–143

    PubMed  Google Scholar 

  16. Hayashi M, Chernov M, Tamura N, Izawa M, Muragaki Y, Iseki H, Okada Y, Takakura K (2011) Gamma Knife robotic microradiosurgery for benign skull base meningiomas: tumor shrinkage may depend on the amount of radiation energy delivered per lesion volume (unit energy). Stereotact Funct Neurosurg 89:6–16

    Article  PubMed  Google Scholar 

  17. Hayashi M, Chernov M, Tamura N, Tamura M, Izawa M, Muragaki Y, Iseki H, Okada Y (2011) “Donut’s shape” radiosurgical treatment planning for large cystic metastatic brain tumors. Minim Invasive Neurosurg 54:286–289

    Article  PubMed  CAS  Google Scholar 

  18. Hayashi M, Chernov MF, Lipski SM, Tamura N, Yomo S, Horiba A, Tsuzuki S, Izawa M, Okada Y, Muragaki Y, Iseki H, Ivanov P, Regis J, Takakura K (2013) Do we really still need an open surgery for treatment of patients with vestibular schwannomas? Acta Neurochir Suppl 116:25–36 (present volume)

    Google Scholar 

  19. Hayashi M, Chernov MF, Tamura N, Yomo S, Tamura M, Horiba A, Izawa M, Muragaki Y, Iseki H, Okada Y, Ivanov P, Regis J, Takakura K (2013) Usefulness of the advanced neuroimaging protocol based on plain and gadolinium-enhanced constructive interference in steady state images for Gamma Knife radiosurgery and planning microsurgical procedures for skull base tumors. Acta Neurochir Suppl 116:167–178 (present volume)

    Google Scholar 

  20. Herman MG, McCullough EC (2002) Physical aspects of cranial stereotactic radiosurgery. In: Pollock BE (ed) Contemporary radiosurgery: technique and evaluation. Futura, Armonk, pp 17–36

    Google Scholar 

  21. Horstmann GA, Van Eck AT (2002) Gamma Knife model C with automatic positioning system and its impact on the treatment of vestibular schwannomas. J Neurosurg 97(5 Suppl):450–455

    PubMed  Google Scholar 

  22. Ivanov P, Chernov M, Hayashi M, Nakaya K, Izawa M, Murata N, Kubo O, Ujiie H, Muragaki Y, Nakamura R, Iseki H, Hori T, Takakura K (2008) Low-dose gamma knife radiosurgery for cavernous sinus hemangioma: report of 3 cases and literature review. Minim Invasive Neurosurg 51:140–146

    Article  PubMed  CAS  Google Scholar 

  23. Karlsson B (2002) Dose selection and prediction of stereotactic radiosurgery outcomes. In: Pollock BE (ed) Contemporary radiosurgery: technique and evaluation. Futura, Armonk, pp 53–73

    Google Scholar 

  24. Koga T, Maruyama K, Igaki H, Tago M, Saito N (2009) The value of image coregistration during stereotactic radiosurgery. Acta Neurochir (Wien) 151:465–471

    Article  CAS  Google Scholar 

  25. Koga T, Maruyama K, Kamada K, Ota T, Shin M, Itoh D, Kunii N, Ino K, Terahara A, Aoki S, Masutani Y, Saito N (2012) Outcomes of diffusion tensor tractography-integrated stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 82:799–802

    Article  PubMed  Google Scholar 

  26. Kondziolka D, Maitz AH, Niranjan A, Flickinger JC, Lunsford LD (2002) An evaluation of the model C Gamma Knife with automatic patient positioning. Neurosurgery 50:429–432

    PubMed  Google Scholar 

  27. Kuo JS, Yu C, Giannotta SL, Petrovich Z, Apuzzo MLJ (2004) The Leksell gamma knife model U versus model C: a quantitative comparison of radiosurgical treatment parameters. Neurosurgery 55:168–173

    Article  PubMed  Google Scholar 

  28. Levivier M, Massager N, Wikler D, Goldman S (2004) Modern multimodal neuroimaging for radiosurgery: the example of PET scan integration. Acta Neurochir Suppl 91:1–7

    PubMed  CAS  Google Scholar 

  29. Lindquist C, Paddick I (2007) The Leksell Gamma Knife Perfexion and comparison with its Predecessors. Neurosurgery 61(3 Suppl):130–141

    Article  PubMed  Google Scholar 

  30. Massager N, Maris C, Nissim O, Devriendt D, Salmon I, Levivier M (2009) Experimental analysis of radiation dose distribution in radiosurgery: I. Dose hot spot inside target volume. Stereotact Funct Neurosurg 87:82–87

    Article  PubMed  Google Scholar 

  31. Massager N, Maris C, Nissim O, Devriendt D, Salmon I, Levivier M (2009) Experimental analysis of radiation dose distribution in radiosurgery: II. Dose fall-off outside the target volume. Stereotact Funct Neurosurg 87:137–142

    Article  PubMed  Google Scholar 

  32. Paddick I, Lippitz B (2006) A simple dose gradient measurement tool to complement the conformity index. J Neurosurg 105(Suppl):194–201

    PubMed  Google Scholar 

  33. Pamir MN, Kilic T, Belirgen M, Abacioglu U, Karabekiroglu N (2007) Pituitary adenomas treated with Gamma Knife radiosurgery: volumetric analysis of 100 cases with minimum 3 year follow-up. Neurosurgery 61:270–280

    Article  PubMed  Google Scholar 

  34. Pantelis E, Papadakis N, Verigos K, Stathochristopoulou I, Antypas C, Lekas L, Tzouras A, Georgiou E, Salvaras N (2010) Integration of functional MRI and white matter tractography in stereotactic radiosurgery clinical practice. Int J Radiat Oncol Biol Phys 82:257–267

    Article  Google Scholar 

  35. Regis J, David P, Wikler D, Porcheron D, Levrier O (2004) Stereotactic mapping for radiosurgical treatment of vestibular schwannomas. Neurochirurgie 50:270–281 (in French)

    PubMed  CAS  Google Scholar 

  36. Regis J, Hayashi M, Porcheron D, Delsanti C, Muracciole X, Peragut JC (2002) Impact of the model C and automatic positioning system on Gamma Knife radiosurgery: an evaluation in vestibular schwannomas. J Neurosurg 97(5 Suppl):588–591

    PubMed  Google Scholar 

  37. Regis J, Tamura M, Guillot C, Yomo S, Muraciolle X, Nagaje M, Arka Y, Porcheron D (2009) Radiosurgery with the world’s first fully robotized Leksell Gamma Knife PerfeXion in clinical use: a 200-patient prospective, randomized, controlled comparison with the Gamma Knife 4C. Neurosurgery 64:346–356

    Article  PubMed  Google Scholar 

  38. Roundy N, Delashaw JB, Cetas JS (2012) Preoperative identification of the facial nerve in patients with large cerebellopontine angle tumors using high-density diffusion tensor imaging. J Neurosurg 116:697–702

    Article  PubMed  Google Scholar 

  39. Takakura K, Hayashi M, Chernov MF, Tamura N, Izawa M, Okada Y, Tamura M, Muragaki Y, Iseki H (2013) Gamma Knife treatment strategy for metastatic brain tumors. Acta Neurochir Suppl 116:63–69 (present volume)

    Google Scholar 

  40. Takakura K, Iseki H, Chernov M, Hayashi M (2010) Development of a concept of Gamma Knife robotic microradiosurgery and its application in management of various intracranial diseases. In: IREIIMS achievement report 2005–2010. IREIIMS, Tokyo Women’s Medical University, Tokyo, p 50

    Google Scholar 

  41. Tishler RB, Loeffler JS, Lunsford LD, Duma C, Alexander E III, Kooy HM, Flickinger JC (1993) Tolerance of cranial nerves of the cavernous sinus to radiosurgery. Int J Radiat Oncol Biol Phys 27:215–221

    Article  PubMed  CAS  Google Scholar 

  42. Tlachacova D, Schmitt M, Novotny J Jr, Novotny J, Majali M, Liscak R (2005) A comparison of the Gamma Knife model C and the automatic positioning system with Leksell model B. J Neurosurg 102(Suppl):25–28

    Article  PubMed  Google Scholar 

  43. Wang X, Mei G, Liu X, Dai J, Pan L, Wang E (2012) The role of stereotactic radiosurgery in cavernous sinus hemangiomas: a systematic review and meta-analysis. J Neurooncol 107:239–245

    Article  PubMed  Google Scholar 

  44. Yamamoto M, Kida Y, Fukuoka S, Iwai Y, Jokura H, Akabane A, Serizawa T (2010) Gamma Knife radiosurgery for hemangiomas of the cavernous sinus: a seven-institute study in Japan. J Neurosurg 112:772–779

    Article  PubMed  Google Scholar 

  45. Yomo S, Hayashi M, Chernov M, Tamura N, Izawa M, Okada Y, Hori T, Iseki H (2009) Stereotactic radiosurgery of residual and recurrent craniopharyngioma: new treatment concept using Leksell Gamma Knife model C with automatic positioning system. Stereotact Funct Neurosurg 87:360–367

    Article  PubMed  Google Scholar 

  46. Yomo S, Tamura M, Carron R, Porcheron D, Regis J (2010) A quantitative comparison of radiosurgical treatment parameters in vestibular schwannomas: the Leksell Gamma Knife Perfexion versus model 4C. Acta Neurochir (Wien) 152:47–55

    Article  Google Scholar 

  47. Zhang B, MacFadden D, Damyanovich AZ, Rieker M, Stainsby J, Bernstein M, Jaffray DA, Mikulis D, Menard C (2010) Development of a geometrically accurate imaging protocol at 3 Tesla MRI for stereotactic radiosurgery treatment planning. Phys Med Biol 55:6601–6615

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motohiro Hayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this paper

Cite this paper

Hayashi, M. et al. (2013). Concept of Robotic Gamma Knife Microradiosurgery and Results of Its Clinical Application in Benign Skull Base Tumors. In: Chernov, M., Hayashi, M., Ganz, J., Takakura, K. (eds) Gamma Knife Neurosurgery in the Management of Intracranial Disorders. Acta Neurochirurgica Supplement, vol 116. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1376-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1376-9_2

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1375-2

  • Online ISBN: 978-3-7091-1376-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics