Skip to main content

Novel Chemotherapeutic Drugs in Sphingolipid Cancer Research

  • Chapter
  • First Online:
Sphingolipids: Basic Science and Drug Development

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 215))

Abstract

Sphingolipid-metabolizing enzymes are becoming targets for chemotherapeutic development with an increasing interest in the recent years. In this chapter we introduce the sphingolipid family of lipids, and the role of individual species in cell homeostasis. We also discuss their roles in several rare diseases and overall, in cancer transformation. We follow the biosynthesis pathway of the sphingolipid tree, focusing on the enzymes in order to understand how using small molecule inhibitors makes it possible to modulate cancer progression. Finally, we describe the most used and historically significant inhibitors employed in cancer research, their relationships to sphingolipid metabolism, and some promising results found in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

D-e-MAPP:

(1S, 2R)-D-erythro-2-(N-Myristoylamino)-1-phenyl-1-propanol

CDase (aCDase nCDase, alkCDase):

Ceramidase (acid, neutral, and alkaline ceramidase)

CerS:

Ceramide synthase

DES:

Dihydroceramide desaturase

GSC:

Glucosylceramide synthase

DMS:

N, N-dimethylsphingosine

TMS:

N, N, N-Trimethylsphingosine

NOE:

N-oleoylethanolamine

PKC:

Protein kinase C

SPT:

Serine-palmitoyl transferase

SMase (aSMase nSMase):

Sphingomyelinase (acid, neutral sphingomyelinase)

SMS:

Sphingomyelin synthase

SPP:

Sphingosine 1-phosphate phosphatase

SK:

Sphingosine kinase

References

  • Abe A, Shayman JA, Radin NS (1996) A novel enzyme that catalyzes the esterification of N-acetylsphingosine. Metabolism of C2-ceramides. J Biol Chem 271:14383–14389

    Article  PubMed  CAS  Google Scholar 

  • Amtmann E, Baader W, Zoller M (2003) Neutral sphingomyelinase inhibitor C11AG prevents lipopolysaccharide-induced macrophage activation. Drugs Exp Clin Res 29:5–13

    PubMed  CAS  Google Scholar 

  • Antoon JW, White MD, Burow ME, Beckman BS (2012) Dual inhibition of sphingosine kinase isoforms ablates TNF-induced drug resistance. Oncol Rep 27:1779–1786

    PubMed  CAS  Google Scholar 

  • Apraiz A, Idkowiak-Baldys J, Nieto-Rementeria N, Boyano MD, Hannun YA, Asumendi A (2012) Dihydroceramide accumulation and reactive oxygen species are distinct and nonessential events in 4-HPR-mediated leukemia cell death. Biochem Cell Biol 90:209–223

    Article  PubMed  CAS  Google Scholar 

  • Arenz C, Thutewohl M, Block O, Waldmann H, Altenbach HJ, Giannis A (2001) Manumycin A and its analogues are irreversible inhibitors of neutral sphingomyelinase. Chembiochem 2: 141–143

    Article  PubMed  CAS  Google Scholar 

  • Bai A, Szulc ZM, Bielawski J, Mayroo N, Liu X, Norris J, Hannun YA, Bielawska A (2009) Synthesis and bioevaluation of omega-N-amino analogs of B13. Bioorg Med Chem 17: 1840–1848

    Article  PubMed  CAS  Google Scholar 

  • Baran Y, Bielawski J, Gunduz U, Ogretmen B (2011) Targeting glucosylceramide synthase sensitizes imatinib-resistant chronic myeloid leukemia cells via endogenous ceramide accumulation. J Cancer Res Clin Oncol 137:1535–1544

    Article  PubMed  CAS  Google Scholar 

  • Basu M, Kelly P, O’Donnell P, Miguel M, Bradley M, Sonnino S, Banerjee S, Basu S (1999) Ceramide glycanase activities in human cancer cells. Biosci Rep 19:449–460

    Article  PubMed  CAS  Google Scholar 

  • Beljanski V, Knaak C, Zhuang Y, Smith CD (2011) Combined anticancer effects of sphingosine kinase inhibitors and sorafenib. Invest New Drugs 29:1132–1142

    Article  PubMed  CAS  Google Scholar 

  • Bielawska A, Bielawski J, Szulc ZM, Mayroo N, Liu X, Bai A, Elojeimy S, Rembiesa B, Pierce J, Norris JS, Hannun YA (2008) Novel analogs of D-e-MAPP and B13. Part 2: signature effects on bioactive sphingolipids. Bioorg Med Chem 16:1032–1045

    Article  PubMed  CAS  Google Scholar 

  • Bielawska A, Greenberg MS, Perry D, Jayadev S, Shayman JA, McKay C, Hannun YA (1996) (1S,2R)-D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol as an inhibitor of ceramidase. J Biol Chem 271:12646–12654

    Article  PubMed  CAS  Google Scholar 

  • Birbes H, Bawab SE, Obeid LM, Hannun YA (2002) Mitochondria and ceramide: intertwined roles in regulation of apoptosis. Adv Enzyme Regul 42:113–129

    Article  PubMed  CAS  Google Scholar 

  • Bourquin F, Capitani G, Grutter MG (2011) PLP-dependent enzymes as entry and exit gates of sphingolipid metabolism. Protein Sci 20:1492–1508

    Article  PubMed  CAS  Google Scholar 

  • Buehrer BM, Bell RM (1992) Inhibition of sphingosine kinase in vitro and in platelets. Implications for signal transduction pathways. J Biol Chem 267:3154–3159

    PubMed  CAS  Google Scholar 

  • Camacho L, Simbari F, Garrido M, Abad JL, Casas J, Delgado A, Fabrias G (2012) 3-Deoxy-3,4-dehydro analogs of XM462. Preparation and activity on sphingolipid metabolism and cell fate. Bioorg Med Chem 20:3173–3179

    Article  PubMed  CAS  Google Scholar 

  • Canals D, Jenkins RW, Roddy P, Hernandez-Corbacho MJ, Obeid LM, Hannun YA (2010) Differential effects of ceramide and sphingosine 1-phosphate on ERM phosphorylation: probing sphingolipid signaling at the outer plasma membrane. J Biol Chem 285:32476–32485

    Article  PubMed  CAS  Google Scholar 

  • Canals D, Perry DM, Jenkins RW, Hannun YA (2011) Drug targeting of sphingolipid metabolism: sphingomyelinases and ceramidases. Br J Pharmacol 163:694–712

    Article  PubMed  CAS  Google Scholar 

  • Charles AG, Han TY, Liu YY, Hansen N, Giuliano AE, Cabot MC (2001) Taxol-induced ceramide generation and apoptosis in human breast cancer cells. Cancer Chemother Pharmacol 47: 444–450

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee S, Cleveland T, Shi WY, Inokuchi J, Radin NS (1996) Studies of the action of ceramide-like substances (D- and L-PDMP) on sphingolipid glycosyltransferases and purified lactosylceramide synthase. Glycoconj J 13:481–486

    Article  PubMed  CAS  Google Scholar 

  • Chumanevich AA, Poudyal D, Cui X, Davis T, Wood PA, Smith CD, Hofseth LJ (2010) Suppression of colitis-driven colon cancer in mice by a novel small molecule inhibitor of sphingosine kinase. Carcinogenesis 31:1787–1793

    Article  PubMed  CAS  Google Scholar 

  • Corcoran CA, He Q, Ponnusamy S, Ogretmen B, Huang Y, Sheikh MS (2008) Neutral sphingomyelinase-3 is a DNA damage and nongenotoxic stress-regulated gene that is deregulated in human malignancies. Mol Cancer Res 6:795–807

    Article  PubMed  CAS  Google Scholar 

  • Coward J, Ambrosini G, Musi E, Truman JP, Haimovitz-Friedman A, Allegood JC, Wang E, Merrill AH Jr, Schwartz GK (2009) Safingol (L-threo-sphinganine) induces autophagy in solid tumor cells through inhibition of PKC and the PI3-kinase pathway. Autophagy 5:184–193

    Article  PubMed  CAS  Google Scholar 

  • Dickson MA, Carvajal RD, Merrill AH Jr, Gonen M, Cane LM, Schwartz GK (2011) A phase I clinical trial of safingol in combination with cisplatin in advanced solid tumors. Clin Cancer Res 17:2484–2492

    Article  PubMed  CAS  Google Scholar 

  • Durrant LG, Noble P, Spendlove I (2012) Immunology in the clinic review series; focus on cancer: glycolipids as targets for tumour immunotherapy. Clin Exp Immunol 167:206–215

    Article  PubMed  CAS  Google Scholar 

  • El Bawab S, Birbes H, Roddy P, Szulc ZM, Bielawska A, Hannun YA (2001) Biochemical characterization of the reverse activity of rat brain ceramidase. A CoA-independent and fumonisin B1-insensitive ceramide synthase. J Biol Chem 276:16758–16766

    Article  PubMed  CAS  Google Scholar 

  • Endo K, Igarashi Y, Nisar M, Zhou QH, Hakomori S (1991) Cell membrane signaling as target in cancer therapy: inhibitory effect of N, N-dimethyl and N, N, N-trimethyl sphingosine derivatives on in vitro and in vivo growth of human tumor cells in nude mice. Cancer Res 51:1613–1618

    PubMed  CAS  Google Scholar 

  • Fabrias G, Munoz-Olaya J, Cingolani F, Signorelli P, Casas J, Gagliostro V, Ghidoni R (2012) Dihydroceramide desaturase and dihydrosphingolipids: debutant players in the sphingolipid arena. Prog Lipid Res 51:82–94

    Article  PubMed  CAS  Google Scholar 

  • Farfel-Becker T, Vitner EB, Futerman AH (2011) Animal models for Gaucher disease research. Dis Model Mech 4:746–752

    Article  PubMed  CAS  Google Scholar 

  • Flowers M, Fabrias G, Delgado A, Casas J, Abad JL, Cabot MC (2011) C6-Ceramide and targeted inhibition of acid ceramidase induce synergistic decreases in breast cancer cell growth. Breast Cancer Res Treat 133:447–458

    Google Scholar 

  • French KJ, Zhuang Y, Maines LW, Gao P, Wang W, Beljanski V, Upson JJ, Green CL, Keller SN, Smith CD (2010) Pharmacology and antitumor activity of ABC294640, a selective inhibitor of sphingosine kinase-2. J Pharmacol Exp Ther 333:129–139

    Article  PubMed  CAS  Google Scholar 

  • Galve-Roperh I, Sanchez C, Cortes ML, Gomez del Pulgar T, Izquierdo M, Guzman M (2000) Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nat Med 6:313–319

    Article  PubMed  CAS  Google Scholar 

  • Granado MH, Gangoiti P, Ouro A, Arana L, Gonzalez M, Trueba M, Gomez-Munoz A (2009) Ceramide 1-phosphate (C1P) promotes cell migration Involvement of a specific C1P receptor. Cell Signal 21:405–412

    Article  PubMed  CAS  Google Scholar 

  • Grazide S, Maestre N, Veldman RJ, Bezombes C, Maddens S, Levade T, Laurent G, Jaffrezou JP (2002) Ara-C- and daunorubicin-induced recruitment of Lyn in sphingomyelinase-enriched membrane rafts. FASEB J 16:1685–1687

    PubMed  CAS  Google Scholar 

  • Grijalvo S, Bedia C, Triola G, Casas J, Llebaria A, Teixido J, Rabal O, Levade T, Delgado A, Fabrias G (2006) Design, synthesis and activity as acid ceramidase inhibitors of 2-oxooctanoyl and N-oleoylethanolamine analogues. Chem Phys Lipids 144:69–84

    Article  PubMed  CAS  Google Scholar 

  • Hakomori SI (2008) Structure and function of glycosphingolipids and sphingolipids: recollections and future trends. Biochim Biophys Acta 1780:325–346

    Article  PubMed  CAS  Google Scholar 

  • Hannun YA, Loomis CR, Merrill AH Jr, Bell RM (1986) Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J Biol Chem 261: 12604–12609

    PubMed  CAS  Google Scholar 

  • Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150

    Article  PubMed  CAS  Google Scholar 

  • Hannun YA, Obeid LM (2011) Many ceramides. J Biol Chem 286:27855–27862

    Article  PubMed  CAS  Google Scholar 

  • Heffernan-Stroud LA, Helke KL, Jenkins RW, De Costa AM, Hannun YA, Obeid LM (2012) Defining a role for sphingosine kinase 1 in p53-dependent tumors. Oncogene 31:1166–1175

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Zhang Y, Liu X, Li Z, Xu W, He S, Huang Y, Zhang H (2011a) Acid sphingomyelinase contributes to evodiamine-induced apoptosis in human gastric cancer SGC-7901 cells. DNA Cell Biol 30:407–412

    Article  PubMed  CAS  Google Scholar 

  • Huang WC, Tsai CC, Chen CL, Chen TY, Chen YP, Lin YS, Lu PJ, Lin CM, Wang SH, Tsao CW, Wang CY, Cheng YL, Hsieh CY, Tseng PC, Lin CF (2011b) Glucosylceramide synthase inhibitor PDMP sensitizes chronic myeloid leukemia T315I mutant to Bcr-Abl inhibitor and cooperatively induces glycogen synthase kinase-3-regulated apoptosis. FASEB J 25:3661–3673

    Article  PubMed  CAS  Google Scholar 

  • Huwiler A, Pfeilschifter J (2008) New players on the center stage: sphingosine 1-phosphate and its receptors as drug targets. Biochem Pharmacol 75:1893–1900

    Article  PubMed  CAS  Google Scholar 

  • Inokuchi J, Jimbo M, Momosaki K, Shimeno H, Nagamatsu A, Radin NS (1990) Inhibition of experimental metastasis of murine Lewis lung carcinoma by an inhibitor of glucosylceramide synthase and its possible mechanism of action. Cancer Res 50:6731–6737

    PubMed  CAS  Google Scholar 

  • Jenkins RW, Canals D, Hannun YA (2009) Roles and regulation of secretory and lysosomal acid sphingomyelinase. Cell Signal 21:836–846

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, DiVittore NA, Kaiser JM, Shanmugavelandy SS, Fritz JL, Heakal Y, Tagaram HR, Cheng H, Cabot MC, Staveley-O’Carroll KF, Tran MA, Fox TE, Barth BM, Kester M (2011) Combinatorial therapies improve the therapeutic efficacy of nanoliposomal ceramide for pancreatic cancer. Cancer Biol Ther 12:574–585

    Article  PubMed  CAS  Google Scholar 

  • Khan WA, Dobrowsky R, el Touny S, Hannun YA (1990) Protein kinase C and platelet inhibition by D-erythro-sphingosine: comparison with N, N-dimethylsphingosine and commercial preparation. Biochem Biophys Res Commun 172:683–691

    Article  PubMed  CAS  Google Scholar 

  • Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17442–17452

    Article  PubMed  CAS  Google Scholar 

  • Krut O, Wiegmann K, Kashkar H, Yazdanpanah B, Kronke M (2006) Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein. J Biol Chem 281:13784–13793

    Article  PubMed  CAS  Google Scholar 

  • Ledesma MD, Prinetti A, Sonnino S, Schuchman EH (2011) Brain pathology in Niemann Pick disease type A: insights from the acid sphingomyelinase knockout mice. J Neurochem 116: 779–788

    Article  PubMed  CAS  Google Scholar 

  • Lee YS, Choi KM, Lee S, Sin DM, Lim Y, Lee YM, Hong JT, Yun YP, Yoo HS (2012) Myriocin, a serine palmitoyltransferase inhibitor, suppresses tumor growth in a murine melanoma model by inhibiting de novo sphingolipid synthesis. Cancer Biol Ther 13:92–100

    Article  PubMed  CAS  Google Scholar 

  • Li QF, Yan J, Zhang K, Yang YF, Xiao FJ, Wu CT, Wang H, Wang LS (2011) Bortezomib and sphingosine kinase inhibitor interact synergistically to induces apoptosis in BCR/ABl + cells sensitive and resistant to STI571 through down-regulation Mcl-1. Biochem Biophys Res Commun 405:31–36

    Article  PubMed  CAS  Google Scholar 

  • Lim KG, Gray AI, Pyne S, Pyne NJ (2012) Resveratrol dimers are novel sphingosine kinase 1 inhibitors and affect sphingosine kinase 1 expression and cancer cell growth and survival. Br J Pharmacol 166:1605–1616

    Google Scholar 

  • Lim KG, Sun C, Bittman R, Pyne NJ, Pyne S (2011) (R)-FTY720 methyl ether is a specific sphingosine kinase 2 inhibitor: effect on sphingosine kinase 2 expression in HEK 293 cells and actin rearrangement and survival of MCF-7 breast cancer cells. Cell Signal 23:1590–1595

    Article  PubMed  CAS  Google Scholar 

  • Luberto C, Hassler DF, Signorelli P, Okamoto Y, Sawai H, Boros E, Hazen-Martin DJ, Obeid LM, Hannun YA, Smith GK (2002) Inhibition of tumor necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase. J Biol Chem 277:41128–41139

    Article  PubMed  CAS  Google Scholar 

  • Maceyka M, Harikumar KB, Milstien S, Spiegel S (2012) Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol 22:50–60

    Article  PubMed  CAS  Google Scholar 

  • Macis D, Gandini S, Guerrieri-Gonzaga A, Johansson H, Magni P, Ruscica M, Lazzeroni M, Serrano D, Cazzaniga M, Mora S, Feroce I, Pizzamiglio M, Sandri MT, Gulisano M, Bonanni B, Decensi A (2012) Prognostic effect of circulating adiponectin in a randomized 2 × 2 trial of low-dose tamoxifen and fenretinide in premenopausal women at risk for breast cancer. J Clin Oncol 30:151–157

    Article  PubMed  CAS  Google Scholar 

  • Mao C, Xu R, Bielawska A, Obeid LM (2000) Cloning of an alkaline ceramidase from Saccharomyces cerevisiae. An enzyme with reverse (CoA-independent) ceramide synthase activity. J Biol Chem 275:6876–6884

    Article  PubMed  CAS  Google Scholar 

  • Mao C, Xu R, Szulc ZM, Bielawska A, Galadari SH, Obeid LM (2001) Cloning and characterization of a novel human alkaline ceramidase. A mammalian enzyme that hydrolyzes phytoceramide. J Biol Chem 276:26577–26588

    Article  PubMed  CAS  Google Scholar 

  • Marchesini N, Luberto C, Hannun YA (2003) Biochemical properties of mammalian neutral sphingomyelinase 2 and its role in sphingolipid metabolism. J Biol Chem 278:13775–13783

    Article  PubMed  CAS  Google Scholar 

  • Maurer BJ, Metelitsa LS, Seeger RC, Cabot MC, Reynolds CP (1999) Increase of ceramide and induction of mixed apoptosis/necrosis by N-(4-hydroxyphenyl)- retinamide in neuroblastoma cell lines. J Natl Cancer Inst 91:1138–1146

    Article  PubMed  CAS  Google Scholar 

  • Medlock KA, Merrill AH Jr (1988) Inhibition of serine palmitoyltransferase in vitro and long-chain base biosynthesis in intact Chinese hamster ovary cells by beta-chloroalanine. Biochemistry 27:7079–7084

    Article  PubMed  CAS  Google Scholar 

  • Milstien S, Spiegel S (2006) Targeting sphingosine-1-phosphate: a novel avenue for cancer therapeutics. Cancer Cell 9:148–150

    Article  PubMed  CAS  Google Scholar 

  • Miyake Y, Kozutsumi Y, Nakamura S, Fujita T, Kawasaki T (1995) Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-1/myriocin. Biochem Biophys Res Commun 211:396–403

    Article  PubMed  CAS  Google Scholar 

  • Moore MM, Stockler M, Lim R, Mok TS, Millward M, Boyer MJ (2010) A phase II study of fenretinide in patients with hormone refractory prostate cancer: a trial of the Cancer Therapeutics Research Group. Cancer Chemother Pharmacol 66:845–850

    Article  PubMed  CAS  Google Scholar 

  • Munoz-Olaya JM, Matabosch X, Bedia C, Egido-Gabas M, Casas J, Llebaria A, Delgado A, Fabrias G (2008) Synthesis and biological activity of a novel inhibitor of dihydroceramide desaturase. Chem Med Chem 3:946–953

    PubMed  CAS  Google Scholar 

  • Nagahashi M, Ramachandran S, Kim EY, Allegood JC, Rashid OM, Yamada A, Zhao R, Milstien S, Zhou H, Spiegel S, Takabe K (2012) Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis. Cancer Res 72:726–735

    Article  PubMed  CAS  Google Scholar 

  • Nara F, Tanaka M, Hosoya T, Suzuki-Konagai K, Ogita T (1999a) Scyphostatin, a neutral sphingomyelinase inhibitor from a discomycete, Trichopeziza mollissima: taxonomy of the producing organism, fermentation, isolation, and physico-chemical properties. J Antibiot (Tokyo) 52:525–530

    Article  CAS  Google Scholar 

  • Nara F, Tanaka M, Masuda-Inoue S, Yamasato Y, Doi-Yoshioka H, Suzuki-Konagai K, Kumakura S, Ogita T (1999b) Biological activities of scyphostatin, a neutral sphingomyelinase inhibitor from a discomycete, Trichopeziza mollissima. J Antibiot (Tokyo) 52:531–535

    Article  CAS  Google Scholar 

  • Noda T, Iwai S, Hamada M, Fujita Y, Yura Y (2009) Induction of apoptosis of detached oral squamous cell carcinoma cells by safingol. Possible role of Bim, focal adhesion kinase and endonuclease G. Apoptosis 14:287–297

    Article  PubMed  CAS  Google Scholar 

  • Novgorodov SA, Wu BX, Gudz TI, Bielawski J, Ovchinnikova TV, Hannun YA, Obeid LM (2011) Novel pathway of ceramide production in mitochondria: thioesterase and neutral ceramidase produce ceramide from sphingosine and acyl-CoA. J Biol Chem 286:25352–25362

    Article  PubMed  CAS  Google Scholar 

  • Ohotski J, Long JS, Orange C, Elsberger B, Mallon E, Doughty J, Pyne S, Pyne NJ, Edwards J (2012) Expression of sphingosine 1-phosphate receptor 4 and sphingosine kinase 1 is associated with outcome in oestrogen receptor-negative breast cancer. Br J Cancer 106: 1453–1459

    Article  PubMed  CAS  Google Scholar 

  • Okazaki T, Bielawska A, Domae N, Bell RM, Hannun YA (1994) Characteristics and partial purification of a novel cytosolic, magnesium-independent, neutral sphingomyelinase activated in the early signal transduction of 1 alpha, 25-dihydroxyvitamin D3-induced HL-60 cell differentiation. J Biol Chem 269:4070–4077

    PubMed  CAS  Google Scholar 

  • Olsen I, Jantzen E (2001) Sphingolipids in Bacteria and Fungi. Anaerobe 7:103–112

    Article  CAS  Google Scholar 

  • Park MA, Mitchell C, Zhang G, Yacoub A, Allegood J, Haussinger D, Reinehr R, Larner A, Spiegel S, Fisher PB, Voelkel-Johnson C, Ogretmen B, Grant S, Dent P (2010) Vorinostat and sorafenib increase CD95 activation in gastrointestinal tumor cells through a Ca(2+)-de novo ceramide-PP2A-reactive oxygen species-dependent signaling pathway. Cancer Res 70: 6313–6324

    Article  PubMed  CAS  Google Scholar 

  • Paugh BS, Paugh SW, Bryan L, Kapitonov D, Wilczynska KM, Gopalan SM, Rokita H, Milstien S, Spiegel S, Kordula T (2008) EGF regulates plasminogen activator inhibitor-1 (PAI-1) by a pathway involving c-Src, PKCdelta, and sphingosine kinase 1 in glioblastoma cells. FASEB J 22:455–465

    Article  PubMed  CAS  Google Scholar 

  • Payne SG, Brindley DN, Guilbert LJ (1999) Epidermal growth factor inhibits ceramide-induced apoptosis and lowers ceramide levels in primary placental trophoblasts. J Cell Physiol 180:263–270

    Article  PubMed  CAS  Google Scholar 

  • Perry DK, Carton J, Shah AK, Meredith F, Uhlinger DJ, Hannun YA (2000) Serine palmitoyltransferase regulates de novo ceramide generation during etoposide-induced apoptosis. J Biol Chem 275:9078–9084

    Article  PubMed  CAS  Google Scholar 

  • Pyne NJ, Pyne S (2011) Selectivity and specificity of sphingosine 1-phosphate receptor ligands: “off-targets” or complex pharmacology? Front Pharmacol 2:26

    Article  PubMed  Google Scholar 

  • Qin J, Berdyshev E, Poirer C, Schwartz NB, Dawson G (2012) Neutral sphingomyelinase 2 deficiency increases hyaluronan synthesis by up-regulation of Hyaluronan synthase 2 through decreased ceramide production and activation of akt. J Biol Chem 287:13620–13632

    Article  PubMed  CAS  Google Scholar 

  • Rahmaniyan M, Curley RW Jr, Obeid LM, Hannun YA, Kraveka JM (2011) Identification of dihydroceramide desaturase as a direct in vitro target for fenretinide. J Biol Chem 286: 24754–24764

    Article  PubMed  CAS  Google Scholar 

  • Ren S, Xin C, Pfeilschifter J, Huwiler A (2010) A novel mode of action of the putative sphingosine kinase inhibitor 2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole (SKI II): induction of lysosomal sphingosine kinase 1 degradation. Cell Physiol Biochem 26:97–104

    Article  PubMed  CAS  Google Scholar 

  • Saad AF, Meacham WD, Bai A, Anelli V, Elojeimy S, Mahdy AE, Turner LS, Cheng J, Bielawska A, Bielawski J, Keane TE, Obeid LM, Hannun YA, Norris JS, Liu X (2007) The functional effects of acid ceramidase overexpression in prostate cancer progression and resistance to chemotherapy. Cancer Biol Ther 6:1455–1460

    Article  PubMed  CAS  Google Scholar 

  • Sabbadini RA (2011) Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration. Br J Pharmacol 162:1225–1238

    Article  PubMed  CAS  Google Scholar 

  • Sakata A, Ochiai T, Shimeno H, Hikishima S, Yokomatsu T, Shibuya S, Toda A, Eyanagi R, Soeda S (2007) Acid sphingomyelinase inhibition suppresses lipopolysaccharide-mediated release of inflammatory cytokines from macrophages and protects against disease pathology in dextran sulphate sodium-induced colitis in mice. Immunology 122:54–64

    Article  PubMed  CAS  Google Scholar 

  • Sanchez T, Hla T (2004) Structural and functional characteristics of S1P receptors. J Cell Biochem 92:913–922

    Article  PubMed  CAS  Google Scholar 

  • Schaefer RM, Tylki-Szymanska A, Hilz MJ (2009) Enzyme replacement therapy for Fabry disease: a systematic review of available evidence. Drugs 69:2179–2205

    Article  PubMed  CAS  Google Scholar 

  • Schiffmann S, Sandner J, Schmidt R, Birod K, Wobst I, Schmidt H, Angioni C, Geisslinger G, Grosch S (2009) The selective COX-2 inhibitor celecoxib modulates sphingolipid synthesis. J Lipid Res 50:32–40

    Article  PubMed  CAS  Google Scholar 

  • Schnute ME, McReynolds MD, Kasten T, Yates M, Jerome G, Rains JW, Hall T, Chrencik J, Kraus M, Cronin CN, Saabye M, Highkin MK, Broadus R, Ogawa S, Cukyne K, Zawadzke LE, Peterkin V, Iyanar K, Scholten JA, Wendling J, Fujiwara H, Nemirovskiy O, Wittwer AJ, Nagiec MM (2012) Modulation of cellular S1P levels with a novel, potent and specific inhibitor of sphingosine kinase-1. Biochem J 444:79–88

    Article  PubMed  CAS  Google Scholar 

  • Schwartz GK, Jiang J, Kelsen D, Albino AP (1993) Protein kinase C: a novel target for inhibiting gastric cancer cell invasion. J Natl Cancer Inst 85:402–407

    Article  PubMed  CAS  Google Scholar 

  • Schwartz GK, Ward D, Saltz L, Casper ES, Spiess T, Mullen E, Woodworth J, Venuti R, Zervos P, Storniolo AM, Kelsen DP (1997) A pilot clinical/pharmacological study of the protein kinase C-specific inhibitor safingol alone and in combination with doxorubicin. Clin Cancer Res 3: 537–543

    PubMed  CAS  Google Scholar 

  • Shapiro D, Flowers HM (1962) Studies on sphingolipids VII. Synthesis and configuration of natural sphingomyelins. J Am Chem Soc 84:1047–1050

    Article  CAS  Google Scholar 

  • Shin KO, Park MY, Seo CH, Lee YI, Kim HS, Yoo HS, Hong JT, Jung JK, Lee YM (2012) Terpene alcohols inhibit de novo sphingolipid biosynthesis. Planta Med 78:434–439

    Article  PubMed  CAS  Google Scholar 

  • Somenzi G, Sala G, Rossetti S, Ren M, Ghidoni R, Sacchi N (2007) Disruption of retinoic acid receptor alpha reveals the growth promoter face of retinoic acid. PLoS One 2:e836

    Article  PubMed  CAS  Google Scholar 

  • Spiegel S, Milstien S (2011) The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol 11:403–415

    Article  PubMed  CAS  Google Scholar 

  • Stoffel W (1970) Studies on the biosynthesis and degradation of sphingosine bases. Chem Phys Lipids 5:139–158

    Article  PubMed  CAS  Google Scholar 

  • Strelow A, Bernardo K, Adam-Klages S, Linke T, Sandhoff K, Kronke M, Adam D (2000) Overexpression of acid ceramidase protects from tumor necrosis factor-induced cell death. J Exp Med 192:601–612

    Article  PubMed  CAS  Google Scholar 

  • Sugita M, Willians M, Dulaney JT, Moser HW (1975) Ceramidase and ceramide synthesis in human kidney and cerebellum. Description of a new alkaline ceramidase. Biochim Biophys Acta 398:125–131

    Article  PubMed  CAS  Google Scholar 

  • Tarabuso AL (2011) Fabry disease. Skinmed 9:173–177

    PubMed  Google Scholar 

  • Tolan D, Conway AM, Steele L, Pyne S, Pyne NJ (1996) The identification of DL-threo dihydrosphingosine and sphingosine as novel inhibitors of extracellular signal-regulated kinase signalling in airway smooth muscle. Br J Pharmacol 119:185–186

    Article  PubMed  CAS  Google Scholar 

  • Tonelli F, Lim KG, Loveridge C, Long J, Pitson SM, Tigyi G, Bittman R, Pyne S, Pyne NJ (2010) FTY720 and (S)-FTY720 vinylphosphonate inhibit sphingosine kinase 1 and promote its proteasomal degradation in human pulmonary artery smooth muscle, breast cancer and androgen-independent prostate cancer cells. Cell Signal 22:1536–1542

    Article  PubMed  CAS  Google Scholar 

  • Triola G, Fabrias G, Casas J, Llebaria A (2003) Synthesis of cyclopropene analogues of ceramide and their effect on dihydroceramide desaturase. J Org Chem 68:9924–9932

    Article  PubMed  CAS  Google Scholar 

  • Triola G, Fabrias G, Dragusin M, Niederhausen L, Broere R, Llebaria A, van Echten-Deckert G (2004) Specificity of the dihydroceramide desaturase inhibitor N-[(1R,2S)-2-hydroxy-1-hydroxymethyl-2-(2-tridecyl-1-cyclopropenyl)ethyl]octanami de (GT11) in primary cultured cerebellar neurons. Mol Pharmacol 66:1671–1678

    Article  PubMed  CAS  Google Scholar 

  • Triola G, Fabrias G, Llebaria A (2001) Synthesis of a cyclopropene analogue of ceramide, a potent inhibitor of dihydroceramide desaturase This work was supported by the Direccion General de Ensenanza Superior e Investigacion Cientifica (grant PB97-1171) and the Departament d'Universitats, Recerca i Societat de la Informacio, Generalitat de Catalunya (grant 1999-SGR 00187 and a Predoctoral fellowship to G.T.). We thank Dr. J. Casas, Dr. A. Delgado, and Dr. J. Joglar for their help in different aspects of this work. Angew Chem Int Ed Engl 40: 1960–1962

    Google Scholar 

  • Villablanca JG, London WB, Naranjo A, McGrady P, Ames MM, Reid JM, McGovern RM, Buhrow SA, Jackson H, Stranzinger E, Kitchen BJ, Sondel PM, Parisi MT, Shulkin B, Yanik GA, Cohn SL, Reynolds CP (2011) Phase II study of oral capsular 4-hydroxyphenylretinamide (4-HPR/fenretinide) in pediatric patients with refractory or recurrent neuroblastoma: a report from the Children’s Oncology Group. Clin Cancer Res 17:6858–6866

    Article  PubMed  CAS  Google Scholar 

  • Villorbina G, Canals D, Carde L, Grijalvo S, Pascual R, Rabal O, Teixido J, Fabrias G, Llebaria A, Casas J, Delgado A (2007) Solid-phase synthesis of a combinatorial library of dihydroceramide analogues and its activity in human alveolar epithelial cells. Bioorg Med Chem 15:50–62

    Article  PubMed  CAS  Google Scholar 

  • Visentin B, Vekich JA, Sibbald BJ, Cavalli AL, Moreno KM, Matteo RG, Garland WA, Lu Y, Yu S, Hall HS, Kundra V, Mills GB, Sabbadini RA (2006) Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9:225–238

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Maurer BJ, Liu YY, Wang E, Allegood JC, Kelly S, Symolon H, Liu Y, Merrill AH Jr, Gouaze-Andersson V, Yu JY, Giuliano AE, Cabot MC (2008) N-(4-Hydroxyphenyl)retinamide increases dihydroceramide and synergizes with dimethylsphingosine to enhance cancer cell killing. Mol Cancer Ther 7:2967–2976

    Article  PubMed  CAS  Google Scholar 

  • Wascholowski V, Giannis A, Pitsinos EN (2006) Influence of the scyphostatin side chain on the mode of inhibition of neutral sphingomyelinase. ChemMedChem 1:718–721

    Article  PubMed  CAS  Google Scholar 

  • Wu BX, Clarke CJ, Hannun YA (2010) Mammalian neutral sphingomyelinases: regulation and roles in cell signaling responses. Neuromolecular Med 12:320–330

    Article  PubMed  CAS  Google Scholar 

  • Yatomi Y, Ruan F, Megidish T, Toyokuni T, Hakomori S, Igarashi Y (1996) N, N-dimethylsphingosine inhibition of sphingosine kinase and sphingosine 1-phosphate activity in human platelets. Biochemistry 35:626–633

    Article  PubMed  CAS  Google Scholar 

  • Yatomi Y, Yamamura S, Ruan F, Kume S, Ozaki Y, Igarashi Y (1997) N, N-dimethylsphingosine 1-phosphate activates human platelets. FEBS Lett 417:341–344

    Article  PubMed  CAS  Google Scholar 

  • Yokomatsu T, Takechi H, Akiyama T, Shibuya S, Kominato T, Soeda S, Shimeno H (2001) Synthesis and evaluation of a difluoromethylene analogue of sphingomyelin as an inhibitor of sphingomyelinase. Bioorg Med Chem Lett 11:1277–1280

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Dr. Mike Airola and María Hernández-Corbacho for the careful reading of this manuscript. This work was supported by NIH grants CA87584 and CA97132.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf A. Hannun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Canals, D., Hannun, Y.A. (2013). Novel Chemotherapeutic Drugs in Sphingolipid Cancer Research. In: Gulbins, E., Petrache, I. (eds) Sphingolipids: Basic Science and Drug Development. Handbook of Experimental Pharmacology, vol 215. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1368-4_12

Download citation

Publish with us

Policies and ethics