Skip to main content

Novel Drugs Targeting Sphingolipid Metabolism

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 215))

Abstract

While the evidence for an involvement of sphingolipids (SLs) in a variety of diseases is rapidly increasing, the development of sphingolipid-related drugs is still in its infancy. In fact, the recently FDA-approved fingolimod or FTY-720 (see chapter by J. Pfeilschifter for more information) is the first drug on the market to interfere with sphingolipid signaling. The reasons for this lagging are manifold and within this chapter we try to name some of them. Ceramide is in the center of sphingolipid metabolism. We describe the most important and most recent inhibitors for enzymes controlling cellular ceramide levels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adibhatla RM, Hatcher JF, Gusain A (2011) Tricyclodecan-9-yl-xanthogenate (D609) mechanism of actions: a mini-review of literature. Neurochem Res. doi:10.1007/s11064-011-0659-z

  • Albouz S, Hauw JJ, Berwald-Netter Y, Boutry JM, Bourdon R, Baumann N (1981) Tricyclic antidepressants induce sphingomyelinase deficiency in fibroblast and neuroblastoma cell cultures. Biomedicine 35:218–220

    PubMed  CAS  Google Scholar 

  • Amtmann E (1996) The antiviral, antitumoural xanthate D609 is a competitive inhibitor of phosphatidylcholine-specific phospholipase C. Drugs Exp Clin Res 22:287–294

    PubMed  CAS  Google Scholar 

  • Amtmann E, Zoller M (2005) Stimulation of CD95-induced apoptosis in T-cells by a subtype specific neutral sphingomyelinase inhibitor. Biochem Pharmacol 69:1141–1148

    Article  PubMed  CAS  Google Scholar 

  • Amtmann E, Zoller M, Schilling G (2000) Neutral sphingomyelinase-inhibiting guanidines prevent herpes simplex virus-1 replication. Drugs Exp Clin Res 26:57–65

    PubMed  CAS  Google Scholar 

  • Amtmann E, Baader W, Zoller M (2003) Neutral sphingomyelinase inhibitor C11AG prevents lipopolysaccharide-induced macrophage activation. Drugs Exp Clin Res 29:5–13

    PubMed  CAS  Google Scholar 

  • Arenz C (2010) Small molecule inhibitors of acid sphingomyelinase. Cell Physiol Biochem 26:01–08

    Article  CAS  Google Scholar 

  • Arenz C, Giannis A (2000) Synthesis of the first selective irreversible inhibitor of neutral sphingomyelinase. Angew Chem Int Ed 39:1440–1442

    Article  CAS  Google Scholar 

  • Arenz C, Thutewohl M, Block O, Waldmann H, Altenbach HJ, Giannis A (2001) Manumycin A and its analogues are irreversible inhibitors of neutral sphingomyelinase. Chembiochem 2:141–143

    Article  PubMed  CAS  Google Scholar 

  • Bai A, Meier GP, Wang Y, Luberto C, Hannun YA, Zhou D (2004) Prodrug modification increases potassium tricyclo[5.2.1.0(2,6)]-decan-8-yl dithiocarbonate (D609) chemical stability and cytotoxicity against U937 leukemia cells. J Pharmacol Exp Ther 309:1051–1059

    Article  PubMed  CAS  Google Scholar 

  • Bai A, Szulc ZM, Bielawski J, Mayroo N, Liu X, Norris J, Hannun YA, Bielawska A (2009) Synthesis and bioevaluation of ω-N-amino analogs of B13. Bioorg Med Chem 17:1840–1848

    Article  PubMed  CAS  Google Scholar 

  • Bedia C, Casas J, Garcia V, Levade T, Fabriàs G (2007) Synthesis of a novel ceramide analogue and its use in a high-throughput fluorogenic assay for ceramidases. Chembiochem 8:642–648

    Article  PubMed  CAS  Google Scholar 

  • Bielawska A, Greenberg MS, Perry D, Jayadev S, Shayman JA, McKay C, Hannun YA (1996) (1S,2R)-D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol as an inhibitor of ceramidase. J Biol Chem 271:12646–12654

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann V, Billich A, Baumruker T, Heining P, Schmouder R, Francis G, Aradhye S, Burtin P (2010) Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov 9:883–897

    Article  PubMed  CAS  Google Scholar 

  • Canals D, Perry DM, Jenkins RW, Hannun YA (2011) Drug targeting of sphingolipid metabolism: sphingomyelinases and ceramidases. Br J Pharmacol 163:694–712

    Article  PubMed  CAS  Google Scholar 

  • Delgado A, Casas J, Llebaria A, Abad JS, Fabrias G (2006) Inhibitors of sphingolipid metabolism enzymes. Biochim Biophys Acta 1758:1957–1977

    Article  PubMed  CAS  Google Scholar 

  • Devlin CM, Leventhal AR, Kuriakose G, Schuchman EH, Williams KJ, Tabas I (2008) Acid sphingomyelinase promotes lipoprotein retention within early atheromata and accelerates lesion progression. Arterioscler Thromb Vasc Biol 28:1723–1730

    Article  PubMed  CAS  Google Scholar 

  • Elojeimy S, Holman DH, Liu X, El-Zawahry A, Villani M, Cheng JC, Mahdy A, Zeidan Y, Bielawska A, Hannun YA, Norris JS (2006) New insights on the use of desipramine as an inhibitor for acid ceramidase. FEBS Lett 580:4751–4756

    Article  PubMed  CAS  Google Scholar 

  • Fan JQ (2003) A contradictory treatment for lysosomal storage disorders: inhibitors enhance mutant enzyme activity. Trends Pharmacol Sci 24:355–360

    Article  PubMed  CAS  Google Scholar 

  • Grijalvo S, Bedia C, Triola G, Casas J, Llebaria A, Teixido J, Rabal O, Levade T, Delgado A, Fabriàs G (2006) Design, synthesis and activity as acid ceramidase inhibitors of 2-oxooctanoyl and N-oleoylethanolamine analogues. Chem Phys Lipids 144:69–84

    Article  PubMed  CAS  Google Scholar 

  • Hemsley KM, Hopwood JJ (2011) Emerging therapies for neurodegenerative lysosomal storage disorders—from concept to reality. J Inherit Metab Dis 34:1003–1012

    Article  PubMed  Google Scholar 

  • Kolter T, Sandhoff K (1999) Sphingolipids-their metabolic pathways and the pathobiochemistry of neurodegenerative diseases. Angew Chem Int Ed 11:1532–1568

    Article  Google Scholar 

  • Kolter T, Proia RL, Sandhoff K (2002) Combinatorial ganglioside biosynthesis. J Biol Chem 277:25859–25862

    Article  PubMed  CAS  Google Scholar 

  • Kölzer M, Arenz C, Ferlinz K, Werth N, Schulze H, Klingenstein R, Sandhoff K (2003) Phosphatidylinositol-3,5-bisphosphate is a potent and selective inhibitor of acid sphingomyelinase. Biol Chem 384:1293–1298

    Article  PubMed  Google Scholar 

  • Kornhuber J, Tripal P, Reichel M, Mühle C, Rhein C, Muehlbacher M, Groemer TW, Gulbins E (2010) Functional inhibitors of acid sphingomyelinase (FIASMAs): a novel pharmacological group of drugs with broad clinical applications. Cell Physiol Biochem 26:09–20

    Article  CAS  Google Scholar 

  • Lang PA, Schenck M, Nicolay JP, Becker JU, Kempe DS, Lupescu A, Koka S, Eisele K, Klarl BA, Rubben H, Schmid KW, Mann K, Hildenbrand S, Hefter H, Huber SM, Wieder T, Erhardt A, Haussinger D, Gulbins E, Lang F (2007) Liver cell death and anemia in wilson disease involve acid sphingomyelinase and ceramide. Nat Med 13:164–170

    Article  PubMed  CAS  Google Scholar 

  • Lee DH, Kim SH, Ahn KH, Kim SK, Choi JM, Ji JE, Won JH, Park YH, Lim C, Kim S, Kim DK (2011) Identification and evaluation of neutral sphingomyelinase 2 inhibitors. Arch Pharm Res 34:229–236

    Article  PubMed  CAS  Google Scholar 

  • Luberto C, Hannun YA (1998) Sphingomyelin synthase, a potential regulator of intracellular levels of ceramide and diacylglycerol during SV40 transformation. Does sphingomyelin synthase account for the putative phosphatidylcholine-specific phospholipase C? J Biol Chem 273:14550–14559

    Article  PubMed  CAS  Google Scholar 

  • Luberto C, Hassler DF, Signorelli P, Okamoto Y, Sawai H, Boros E, Hazen-Martin DJ, Obeid LM, Hannun YA, Smith GK (2002) Inhibition of tumor necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase. J Biol Chem 277:41128–41139

    Article  PubMed  CAS  Google Scholar 

  • Mandala SM, Thornton RA, Rosenbach M, Milligan J, Garcia-Calvo M, Bull HG, Kurtz MB (1997) Khafrefungin, a novel inhibitor of sphingolipid synthesis. J Biol Chem 272:32709–32714

    Article  PubMed  CAS  Google Scholar 

  • Mandala SM, Thornton RA, Milligan J, Rosenbach M, Garcia-Calvo M, Bull HG, Harris G, Abruzzo GK, Flattery AM, Gill CJ, Bartizal K, Dreikorn S, Kurtz MB (1998) Rustmicin, a potent antifungal agent, inhibits sphingolipid synthesis at inositol phosphoceramide synthase. J Biol Chem 273:14942–14949

    Article  PubMed  CAS  Google Scholar 

  • Nara F, Tanaka M, Masuda-Inoue S, Yamasato Y, Doi-Yoshioka H, Suzuki-Konagai K, Kumakura S, Ojita T (1999) Biological activities of scyphostatin, a neutral sphingomyelinase inhibitor from a discomycete, Trichopeziza mollissima. J Antibiot 52:531–535

    Article  PubMed  CAS  Google Scholar 

  • Platt FM, Neises GR, Dwek RA, Butter TD (1994) N-butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. J Biol Chem 269:8362–8365

    PubMed  CAS  Google Scholar 

  • Raisova M, Goltz G, Bektas M, Bielawska A, Riebeling C, Hossini AM, Eberlea J, Hannun YA, Orfanos CE, Geilen CC (2002) Bcl-2 overexpression prevents apoptosis induced by ceramidase inhibitors in malignant melanoma and HaCaT keratinocytes. FEBS Lett 516:47–52

    Article  PubMed  CAS  Google Scholar 

  • Riethmüller J, Anthonysamy J, Emilio Serra E, Schwab M, Döring G, Gulbins E (2009) Therapeutic efficacy and safety of amitriptyline in patients with cystic fibrosis. Cell Physiol Biochem 22:405–412

    Google Scholar 

  • Roth AG, Redmer S, Arenz C (2009a) Potent inhibition of acid sphingomyelinase by phosphoinositide analogues. Chembiochem 10:2367–2374

    Article  PubMed  CAS  Google Scholar 

  • Roth AG, Drescher D, Yang Y, Redmer S, Uhlig S, Arenz C (2009b) Potent and selective inhibition of acid sphingomyelinase by bisphosphonates. Angew Chem Int Ed 48:7560–7563

    Article  CAS  Google Scholar 

  • Roth AG, Redmer S, Arenz C (2010) Development of carbohydrate-derived inhibitors of acid sphingomyelinase. Bioorg Med Chem 18:939–944

    Article  PubMed  CAS  Google Scholar 

  • Schuchman E, Desnick RJ (2005) Chaperone-based therapy for Niemann–Pick-disease. US Patent Application Publication, Pub. No.: US 2005/0153934 A1

    Google Scholar 

  • Strelow A, Bernardo K, Adam-Klages S, Linke T, Sandhoff K, Kronke M, Adam D (2000) Overexpression of acid ceramidase protects from tumor necrosis factor-induced cell death. J Exp Med 192:601–612

    Article  PubMed  CAS  Google Scholar 

  • Szulc ZM, Mayroo N, Bai A, Bielawski J, Liu X, Norris JS, Hannun YA, Bielawska A (2008) Novel analogs of d-e-MAPP and B13. Part 1: synthesis and evaluation as potential anticancer agents. Bioorg Med Chem 16:1015–1031

    Article  PubMed  CAS  Google Scholar 

  • Teichgraber V, Ulrich M, Endlich N, Riethmuller J, Wilker B, De Oliveira-Munding CC, van Heeckeren AM, Barr ML, von Kurthy G, Schmid KW, Weller M, Tummler B, Lang F, Grassme H, Doring G, Gulbins E (2008) Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 14:382–391

    Article  PubMed  Google Scholar 

  • Triola G, Fabrias G, Llebaria A (2001) Synthesis of a cyclopropene analogue of ceramide, a potent inhibitor of dihydroceramide desaturase. Angew Chem Int Ed Engl 40:1960–1962

    Article  PubMed  CAS  Google Scholar 

  • Triola G, Fabrias G, Dragusin M, Niederhausen L, Broere R, Llebaria A, van Echten-Deckert G (2004) Specificity of the dihydroceramide desaturase inhibitor N-[(1R,2S)-2-hydroxy-1-hydroxymethyl-2-(2-tridecyl-1-cyclopropenyl)ethyl]o ctanamide (GT11) in primary cultured cerebellar neurons. Mol Pharmacol 66:1671–1678

    Article  PubMed  CAS  Google Scholar 

  • Ueda N, Yamanaka K, Yamamoto S (2001) Purification and characterization of an acid amidase selective for N-palmitoylethanolamine, a putative endogenous anti-inflammatory substance. J Biol Chem 276:35552–35557

    Article  PubMed  CAS  Google Scholar 

  • Wascholowski V, Giannis A (2006) Sphingolactones: selective and irreversible inhibitors of neutral sphingomyelinase. Angew Chem Int Ed 45:827–830

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding by the DFG priority program “Sphingolipids—Signal and Disease.” K.P.B. thanks the Alexander v. Humboldt Foundation for a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Arenz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhabak, K.P., Arenz, C. (2013). Novel Drugs Targeting Sphingolipid Metabolism. In: Gulbins, E., Petrache, I. (eds) Sphingolipids: Basic Science and Drug Development. Handbook of Experimental Pharmacology, vol 215. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1368-4_10

Download citation

Publish with us

Policies and ethics