Skip to main content

Tumor-Infiltrating Lymphocytes and Their Role in Solid Tumor Progression

  • Chapter
  • First Online:
Book cover Interaction of Immune and Cancer Cells

Abstract

Tumor-infiltrating lymphocytes (TIL) are an important component of the tumor environment. Their role in tumor growth and progression has been debated for decades, with the current emphasis on survival benefits TIL appear to bestow on the host when present in situ as large aggregates of activated T and B cells. Gene signatures and protein profiling of TIL provide clues about their potential functions in the tumor, and correlations with clinicopathological tumor characteristics, clinical outcome, and patients’ survival data indicate that TIL exert influence on the disease progression, especially in colorectal carcinomas and breast cancer. At the same time, the recognition that TIL signatures vary in composition and with time, and that TIL interactions with the tumor cells are complex, calls for a more careful assessment of their prognostic significance. The mechanisms tumors utilize to subvert the host immune system are well-known. The balance between pro- and anti-tumor responses of TIL might be orchestrated by the tumor serving as a measure of its aggressiveness and potentially providing a key to selecting therapeutic strategies and to prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ab:

Antibody

ADCC:

Antibody-dependent cellular cytotoxicity

CFC:

Cytokine flow cytometry

CRC:

Colorectal cancer

CTL:

Cytolytic T cell

CTLA-4:

Cytotoxic T lymphocyte-associated antigen-4

DC:

Dendritic cells

ER:

Estrogen receptor

IGKC:

IgG kappa chain

MDSC:

Myeloid-derived suppressor cells

MHC:

Major histocompatibility complex

NK:

Natural killer cells

NSCLC:

Non-small cell lung cancer

PD-1:

Programmed cell death protein-1

PGE2:

Prostaglandin E2

PMN:

Polymorphonuclear neutrophils

TA:

Tumor-associated antigen

TCR:

T-cell receptor

TGF-β:

Transforming growth factor-β

Th cell:

T helper cell

TIL:

Tumor-infiltrating lymphocytes

TMA:

Tissue microarrays

Treg:

Regulatory T cells

VEGF:

Vascular endothelial growth factor

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  PubMed  CAS  Google Scholar 

  2. Ostrand-Rosenberg S (2008) Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev 18(1):11–18

    Article  PubMed  CAS  Google Scholar 

  3. Fregni G et al (2012) NK cells sense tumors, course of disease and treatments: consequences for NK-based therapies. Oncoimmunology 1(1):38–47

    Article  PubMed  Google Scholar 

  4. Schmidt M et al (2012) A comprehensive analysis of human gene expression profiles identifies stromal immunoglobulin kappa C as a compatible prognostic marker in human solid tumors. Clin Cancer Res 18(9):2695–2703

    Article  PubMed  CAS  Google Scholar 

  5. Nielsen JS et al (2012) CD20+ tumor-infiltrating lymphocytes have an atypical CD27− memory phenotype and together with CD8+ T cells promote favorable prognosis in ovarian cancer. Clin Cancer Res 18(12):3281–3292

    Article  PubMed  CAS  Google Scholar 

  6. Caligiuri MA (2008) Human natural killer cells. Blood 112(3):461–469

    Article  PubMed  CAS  Google Scholar 

  7. von Kleist S et al (1987) Immunohistological analysis of lymphocyte subpopulations infiltrating breast carcinomas and benign lesions. Int J Cancer 40(1):18–23

    Article  Google Scholar 

  8. Martinet L et al (2011) Human solid tumors contain high endothelial venules: association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer. Cancer Res 71(17):5678–5687

    Article  PubMed  CAS  Google Scholar 

  9. Chew V et al (2012) Chemokine-driven lymphocyte infiltration: an early intratumoural event determining long-term survival in resectable hepatocellular carcinoma. Gut 61(3):427–438

    Article  PubMed  CAS  Google Scholar 

  10. Galon J et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964

    Article  PubMed  CAS  Google Scholar 

  11. Fridman WH et al (2011) Prognostic and predictive impact of intra- and peritumoral immune infiltrates. Cancer Res 71(17):5601–5605

    Article  PubMed  CAS  Google Scholar 

  12. Pages F et al (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353(25):2654–2666

    Article  PubMed  CAS  Google Scholar 

  13. Mlecnik B et al (2011) Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol 29(6):610–618

    Article  PubMed  Google Scholar 

  14. Sato E et al (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102(51):18538–18543

    Article  PubMed  CAS  Google Scholar 

  15. Mahmoud SM et al (2011) Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 29(15):1949–1955

    Article  PubMed  Google Scholar 

  16. Galon J et al (2012) The immune score as a new possible approach for the classification of cancer. J Transl Med 10:1

    Article  PubMed  Google Scholar 

  17. Britten CM et al (2011) Minimal information about T cell assays: the process of reaching the community of T cell immunologists in cancer and beyond. Cancer Immunol Immunother 60(1):15–22

    Article  PubMed  CAS  Google Scholar 

  18. Albers AE et al (2005) Immune responses to p53 in patients with cancer: enrichment in tetramer+ p53 peptide-specific T cells and regulatory T cells at tumor sites. Cancer Immunol Immunother 54(11):1072–1081

    Article  PubMed  CAS  Google Scholar 

  19. Kim JW et al (2005) Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res 11(3):1010–1020

    PubMed  CAS  Google Scholar 

  20. Hoffmann TK et al (2002) Spontaneous apoptosis of circulating T lymphocytes in patients with head and neck cancer and its clinical importance. Clin Cancer Res 8(8):2553–2562

    PubMed  Google Scholar 

  21. Whiteside TL (2013) Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem Soc Trans 41(1):245–251

    Article  PubMed  CAS  Google Scholar 

  22. Whiteside TL (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27(45):5904–5912

    Article  PubMed  CAS  Google Scholar 

  23. Ferrone S, Whiteside TL (2007) Tumor microenvironment and immune escape. Surg Oncol Clin N Am 16(4):755–774, viii

    Article  PubMed  Google Scholar 

  24. Mittendorf EA, Sharma P (2010) Mechanisms of T-cell inhibition: implications for cancer immunotherapy. Expert Rev Vaccines 9(1):89–105

    Article  PubMed  CAS  Google Scholar 

  25. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264

    Article  PubMed  CAS  Google Scholar 

  26. Whiteside TL (2012) What are regulatory T cells (Treg) regulating in cancer and why? Semin Cancer Biol 22(4):327–334

    Article  PubMed  CAS  Google Scholar 

  27. Marigo I et al (2008) Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev 222:162–179

    Article  PubMed  CAS  Google Scholar 

  28. Romagnani S (1997) The Th1/Th2 paradigm. Immunol Today 18(6):263–266

    Article  PubMed  CAS  Google Scholar 

  29. Knutson KL, Disis ML (2005) Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 54(8):721–728

    Article  PubMed  CAS  Google Scholar 

  30. Kalams SA, Walker BD (1998) The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. J Exp Med 188(12):2199–2204

    Article  PubMed  CAS  Google Scholar 

  31. Tatsumi T et al (2002) Disease-associated bias in T helper type 1 (Th1)/Th2 CD4(+) T cell responses against MAGE-6 in HLA-DRB10401(+) patients with renal cell carcinoma or melanoma. J Exp Med 196(5):619–628

    Article  PubMed  CAS  Google Scholar 

  32. Teschendorff AE et al (2007) An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biol 8(8):R157

    Article  PubMed  Google Scholar 

  33. Teschendorff AE et al (2010) Improved prognostic classification of breast cancer defined by antagonistic activation patterns of immune response pathway modules. BMC Cancer 10:604

    Article  PubMed  Google Scholar 

  34. Yang L et al (2012) Expression of Th17 cells in breast cancer tissue and its association with clinical parameters. Cell Biochem Biophys 62(1):153–159

    Article  PubMed  CAS  Google Scholar 

  35. Kryczek I et al (2009) Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114(6):1141–1149

    Article  PubMed  CAS  Google Scholar 

  36. Silva-Santos B (2010) Promoting angiogenesis within the tumor microenvironment: the secret life of murine lymphoid IL-17-producing gammadelta T cells. Eur J Immunol 40(7):1873–1876

    Article  PubMed  CAS  Google Scholar 

  37. Lanca T, Silva-Santos B (2012) The split nature of tumor-infiltrating leukocytes: Implications for cancer surveillance and immunotherapy. Oncoimmunology 1(5):717–725

    Article  PubMed  Google Scholar 

  38. Whiteside TL, Schuler P, Schilling B (2012) Induced and natural regulatory T cells in human cancer. Expert Opin Biol Ther 12(10):1383–1397

    Article  PubMed  CAS  Google Scholar 

  39. Schmidt M et al (2008) The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res 68(13):5405–5413

    Article  PubMed  CAS  Google Scholar 

  40. Whiteside TL, Ferrone S (2012) For breast cancer prognosis, immunoglobulin kappa chain surfaces to the top. Clin Cancer Res 18(9):2417–2419

    Article  PubMed  CAS  Google Scholar 

  41. Biragyn A, Lee-Chang C (2012) A new paradigm for an old story: the role of regulatory B cells in cancer. Front Immunol 3:206

    Article  PubMed  CAS  Google Scholar 

  42. Saze Z et al (2013) Adenosine production by human B cells and B cell-mediated suppression of activated T cells. Blood 122(1):9–18

    Article  PubMed  CAS  Google Scholar 

  43. Vivier E et al (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331(6013):44–49

    Article  PubMed  CAS  Google Scholar 

  44. Ljunggren HG, Malmberg KJ (2007) Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol 7(5):329–339

    Article  PubMed  CAS  Google Scholar 

  45. Platonova S et al (2011) Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res 71(16):5412–5422

    Article  PubMed  CAS  Google Scholar 

  46. Schantz SP et al (1986) Natural killer cell activity and head and neck cancer: a clinical assessment. J Natl Cancer Inst 77(4):869–875

    PubMed  CAS  Google Scholar 

  47. Liu S et al (2012) CD8+ lymphocyte infiltration is an independent favorable prognostic indicator in basal-like breast cancer. Breast Cancer Res 14(2):R48

    Article  PubMed  CAS  Google Scholar 

  48. Fridman WH et al (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12(4):298–306

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresa L. Whiteside .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Whiteside, T.L. (2014). Tumor-Infiltrating Lymphocytes and Their Role in Solid Tumor Progression. In: Klink, M. (eds) Interaction of Immune and Cancer Cells. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1300-4_6

Download citation

Publish with us

Policies and ethics