Skip to main content

Spatial Maps in the Entorhinal Cortex and Adjacent Structures

  • Chapter
  • First Online:

Abstract

This chapter presents an introductory overview on grid cells and other cell types in the entorhinal cortex and adjacent regions, which are believed to be part of the brain’s representation of space. Grid cells, which have been discovered only recently, are thought to be part of a class of cells in the mammalian hippocampal and parahippocampal cortices which are involved in the cognitive mapping of the spatial environment. These cells include also place cells, head-direction cells, and border cells. In this chapter, we shall portray the phenomenological characteristics of the recently discovered grid cells and compare them to the other types of mapping-related cells in hippocampal and parahippocampal regions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barnes CA, McNaughton BL, Mizumori SJ, Leonard BW, Lin LH (1990) Comparison of spatial and temporal characteristics of neuronal activity in sequential stages of hippocampal processing. Prog Brain Res 83:287–300

    Article  CAS  PubMed  Google Scholar 

  • Barry C, Lever C, Hayman R, Hartley T, Burton S, O'Keefe J, Jeffery K, Burgess N (2006) The boundary vector cell model of place cell firing and spatial memory. Rev Neurosci 17:71–97

    Article  PubMed Central  PubMed  Google Scholar 

  • Barry C, Hayman R, Burgess N, Jeffery KJ (2007) Experience-dependent rescaling of entorhinal grids. Nat Neurosci 10:682–684

    Article  CAS  PubMed  Google Scholar 

  • Best PJ, White AM, Minai A (2001) Spatial processing in the brain: the activity of hippocampal place cells. Annu Rev Neurosci 24:459–486

    Article  CAS  PubMed  Google Scholar 

  • Boccara CN, Sargolini F, Thoresen VH, Solstad T, Witter MP, Moser EI, Moser M-B (2010) Grid cells in pre- and parasubiculum. Nat Neurosci 13:987–994

    Article  CAS  PubMed  Google Scholar 

  • Bonnevie T, Dunn B, Fyhn M, Hafting T, Derdikman D, Kubie JL, Roudi Y, Moser EI, Moser M-B (2013) Grid cells require excitatory drive from the hippocampus. Nat Neurosci 16:309–317

    Article  CAS  PubMed  Google Scholar 

  • Brandon MP, Bogaard AR, Libby CP, Connerney MA, Gupta K, Hasselmo ME (2011) Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. Science 332:595–599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brun VH, Otnass MK, Molden S, Steffenach H-A, Witter MP, Moser M-B, Moser EI (2002) Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 296:2243–2246

    Article  CAS  PubMed  Google Scholar 

  • Brun VH, Solstad T, Kjelstrup KB, Fyhn M, Witter MP, Moser EI, Moser M-B (2008) Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex. Hippocampus 18:1200–1212

    Article  PubMed  Google Scholar 

  • Burgalossi A, Herfst L, von Heimendahl M, Förste H, Haskic K, Schmidt M, Brecht M (2011) Microcircuits of functionally identified neurons in the rat medial entorhinal cortex. Neuron 70:773–786

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33:325–340

    Article  CAS  PubMed  Google Scholar 

  • Buzsáki G, Moser EI (2013) Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat Neurosci 16:130–138

    Article  PubMed  Google Scholar 

  • Couey JJ, Witoelar A, Zhang S-J, Zheng K, Ye J, Dunn B, Czajkowski R, Moser M-B, Moser EI, Roudi Y (2013) Recurrent inhibitory circuitry as a mechanism for grid formation. Nat Neurosci 16:318–324

    Article  CAS  PubMed  Google Scholar 

  • Derdikman D (2009) Are the boundary-related cells in the subiculum boundary-vector cells? J Neurosci 29:13429–13431

    Article  CAS  PubMed  Google Scholar 

  • Derdikman D, Whitlock JR, Tsao A, Fyhn M, Hafting T, Moser M-B, Moser EI (2009) Fragmentation of grid cell maps in a multicompartment environment. Nat Neurosci 12:1325–1332

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh SS (2014) Spatial and nonspatial representations in the lateral entorhinal cortex. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Dolorfo CL, Amaral DG (1998) Entorhinal cortex of the rat: organization of intrinsic connections. J Comp Neurol 398:49–82

    Article  CAS  PubMed  Google Scholar 

  • Eichenbaum H, MacDonald CJ, Kraus BJ (2014) Time and the hippocampus. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Frank LM, Brown EN, Wilson M (2000) Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 27:169–178

    Article  CAS  PubMed  Google Scholar 

  • Frank LM, Brown EN, Wilson MA (2001) A comparison of the firing properties of putative excitatory and inhibitory neurons from CA1 and the entorhinal cortex. J Neurophysiol 86:2029–2040

    CAS  PubMed  Google Scholar 

  • Fyhn M, Molden S, Witter MP, Moser EI, Moser MB (2004) Spatial representation in the entorhinal cortex. Science 305:1258–1264

    Article  CAS  PubMed  Google Scholar 

  • Fyhn M, Hafting T, Treves A, Moser MB, Moser EI (2007) Hippocampal remapping and grid realignment in entorhinal cortex. Nature 446:190–194

    Article  CAS  PubMed  Google Scholar 

  • Giocomo LM, Hussaini SA, Zheng F, Kandel ER, Moser M-B, Moser EI (2011) Grid cells use HCN1 channels for spatial scaling. Cell 147:1159–1170

    Article  CAS  PubMed  Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806

    Article  CAS  PubMed  Google Scholar 

  • Hafting T, Fyhn M, Bonnevie T, Moser MB, Moser EI (2008) Hippocampus-independent phase precession in entorhinal grid cells. Nature 453:1248–1252

    Article  CAS  PubMed  Google Scholar 

  • Hargreaves EL, Rao G, Lee I, Knierim JJ (2005) Major dissociation between medial and lateral entorhinal input to dorsal hippocampus. Science 308:1792–1794

    Article  CAS  PubMed  Google Scholar 

  • Hartley T, Burgess N, Lever C, Cacucci F, O’Keefe J (2000) Modeling place fields in terms of the cortical inputs to the hippocampus. Hippocampus 10:369–379

    Article  CAS  PubMed  Google Scholar 

  • Jezek K, Henriksen EJ, Treves A, Moser EI, Moser M-B (2011) Theta-paced flickering between place-cell maps in the hippocampus. Nature 478:246–249

    Article  CAS  PubMed  Google Scholar 

  • Jung MW, Wiener SI, McNaughton BL (1994) Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. J Neurosci 14:7347–7356

    CAS  PubMed  Google Scholar 

  • Kjelstrup KB, Solstad T, Brun VH, Hafting T, Leutgeb S, Witter MP, Moser EI, Moser MB (2008) Finite scale of spatial representation in the hippocampus. Science 321:140–143

    Article  CAS  PubMed  Google Scholar 

  • Koenig J, Linder AN, Leutgeb JK, Leutgeb S (2011) The spatial periodicity of grid cells is not sustained during reduced theta oscillations. Science 332:592–595

    Article  CAS  PubMed  Google Scholar 

  • Langston RF, Ainge JA, Couey JJ, Canto CB, Bjerknes TL, Witter MP, Moser EI, Moser M-B (2010) Development of the spatial representation system in the rat. Science 328:1576–1580

    Article  CAS  PubMed  Google Scholar 

  • Las L, Ulanovsky N (2014) Hippocampal neurophysiology across species. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Leutgeb S, Leutgeb JK, Barnes CA, Moser EI, McNaughton BL, Moser MB (2005) Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science 309:619–623

    Article  CAS  PubMed  Google Scholar 

  • Lever C, Burton S, Jeewajee A, O’Keefe J, Burgess N (2009) Boundary vector cells in the subiculum of the hippocampal formation. J Neurosci 29:9771–9777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lever C, Kaplan R, Burgess N (2014) The function of oscillations in the hippocampal formation. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Lu L, Leutgeb JK, Tsao A, Henriksen EJ, Leutgeb S, Barnes CA, Witter MP, Moser M-B, Moser EI (2013) Impaired hippocampal rate coding after lesions of the lateral entorhinal cortex. Nat Neurosci 16:1085–1093

    Article  CAS  PubMed  Google Scholar 

  • Mathis A, Herz A, Stemmler M (2012) Optimal population codes for space: grid cells outperform place cells. Neural Comput 24:2280–2317

    Article  PubMed  Google Scholar 

  • Mcnaughton BL, Barnes CA, Meltzer J, Sutherland RJ (1989) Hippocampal granule cells are necessary for normal spatial-learning but not for spatially-selective pyramidal cell discharge. Exp Brain Res 76:485–496

    Article  CAS  PubMed  Google Scholar 

  • McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB (2006) Path integration and the neural basis of the ‘cognitive map’. Nat Rev Neurosci 7:663–678

    Article  CAS  PubMed  Google Scholar 

  • Monaco JD, Abbott LF (2011) Modular realignment of entorhinal grid cell activity as a basis for hippocampal remapping. J Neurosci 31:9414–9425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Navratilova Z, McNaughton BL (2014) Models of path integration in the hippocampal complex. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Neunuebel JP, Yoganarasimha D, Rao G, Knierim JJ (2013) Conflicts between local and global spatial frameworks dissociate neural representations of the lateral and medial entorhinal cortex. J Neurosci 33:9246–9258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Keefe J, Burgess N (1996) Geometric determinants of the place fields of hippocampal neurons. Nature 381:425–428

    Article  PubMed  Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon Press/Oxford University Press, Oxford/New York

    Google Scholar 

  • O’Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3:317–330

    Article  PubMed  Google Scholar 

  • Pastalkova E, Itskov V, Amarasingham A, Buzsaki G (2008) Internally generated cell assembly sequences in the rat hippocampus. Science 321:1322–1327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quirk GJ, Muller RU, Kubie JL, Ranck JB Jr (1992) The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells. J Neurosci 12:1945–1963

    CAS  PubMed  Google Scholar 

  • Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser MB, Moser EI (2006) Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312:758–762

    Article  CAS  PubMed  Google Scholar 

  • Savelli F, Knierim JJ (2010) Hebbian analysis of the transformation of medial entorhinal grid-cell inputs to hippocampal place fields. J Neurophysiol 103:3167–3183

    Article  PubMed Central  PubMed  Google Scholar 

  • Savelli F, Yoganarasimha D, Knierim JJ (2008) Influence of boundary removal on the spatial representations of the medial entorhinal cortex. Hippocampus 18:1270–1282

    Article  PubMed Central  PubMed  Google Scholar 

  • Skaggs WE, McNaughton BL, Wilson MA, Barnes CA (1996) Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6:149–172

    Article  CAS  PubMed  Google Scholar 

  • Solstad T, Moser EI, Einevoll GT (2006) From grid cells to place cells: a mathematical model. Hippocampus 16:1026–1031

    Article  PubMed  Google Scholar 

  • Solstad T, Boccara C, Kropff E, Moser MB, Moser EI (2008) Representation of geometric borders in the entorhinal cortex. Science 322:1865–1868

    Article  CAS  PubMed  Google Scholar 

  • Stensola H, Stensola T, Solstad T, Frøland K, Moser M-B, Moser EI (2012) The entorhinal grid map is discretized. Nature 492:72–78

    Article  CAS  PubMed  Google Scholar 

  • Stensola T, Stensola H, Moser M-B, Moser EI (2013) Environmental constraints on grid cell orientation. Soc Neurosci Abstr 769.15

    Google Scholar 

  • Taube JS, Muller RU, Ranck JB (1990) Head-direction cells recorded from the postsubiculum in freely moving rats.1. Description and quantitative-analysis. J Neurosci 10:420–435

    CAS  PubMed  Google Scholar 

  • Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189–208

    Article  CAS  PubMed  Google Scholar 

  • Van Cauter T, Poucet B, Save E (2008) Unstable CA1 place cell representation in rats with entorhinal cortex lesions. Eur J Neurosci 27:1933–1946

    Article  PubMed  Google Scholar 

  • Van Cauter T, Camon J, Alvernhe A, Elduayen C, Sargolini F, Save E (2012) Distinct roles of medial and lateral entorhinal cortex in spatial cognition. Cereb Cortex 23:451–459

    Article  PubMed  Google Scholar 

  • Vanderwolf CH (1969) Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol 26:407–418

    Article  CAS  PubMed  Google Scholar 

  • Vanderwolf CH, Kramis R, Robinson TE (1977) Hippocampal electrical activity during waking behaviour and sleep: analyses using centrally acting drugs. Ciba Found Symp (58) 199–226

    Google Scholar 

  • Whitlock JR, Derdikman D (2012) Head direction maps remain stable despite grid map fragmentation. Front Neural Circuits 6:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Widloski J, Fiete I (2014) How does the brain solve the computational problems of spatial navigation? In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Wills TJ, Cacucci F, Burgess N, O’Keefe J (2010) Development of the hippocampal cognitive map in preweanling rats. Science 328:1573–1576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson MA, McNaughton BL (1993) Dynamics of the hippocampal ensemble code for space. Science 261:1055–1058

    Article  CAS  PubMed  Google Scholar 

  • Witter MP, Amaral DG (2004) Hippocampal formation. In: Paxinos G (ed) The rat nervous system. Elsevier, San Diego, CA, pp 635–704

    Google Scholar 

  • Witter MP, Groenewegen HJ, Lopes da Silva FH, Lohman AH (1989) Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog Neurobiol 33:161–253

    Article  CAS  PubMed  Google Scholar 

  • Wood ER, Dudchenko PA, Eichenbaum H (1999) The global record of memory in hippocampal neuronal activity. Nature 397:613–616

    Article  CAS  PubMed  Google Scholar 

  • Wood ER, Agster KM, Eichenbaum H (2004) One-trial odor-reward association: a form of event memory not dependent on hippocampal function. Behav Neurosci 118:526–539

    Article  PubMed  Google Scholar 

  • Yartsev M, Witter M, Ulanovsky N (2011) Grid cells without theta oscillations in the entorhinal cortex of bats. Nature 479:103–107

    Article  CAS  PubMed  Google Scholar 

  • Yoon K, Buice MA, Barry C, Hayman R, Burgess N, Fiete IR (2013) Specific evidence of low-dimensional continuous attractor dynamics in grid cells. Nat Neurosci 16:1077–1084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang SJ, Ye J, Miao C, Tsao A, Cerniauskas I, Ledergerber D, Moser M-B, Moser EI (2013) Optogenetic dissection of entorhinal-hippocampal functional connectivity. Science 340:1232627

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dori Derdikman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Derdikman, D., Moser, E.I. (2014). Spatial Maps in the Entorhinal Cortex and Adjacent Structures. In: Derdikman, D., Knierim, J. (eds) Space,Time and Memory in the Hippocampal Formation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1292-2_5

Download citation

Publish with us

Policies and ethics