Skip to main content

Plant Internal Oxygen Transport (Diffusion and Convection) and Measuring and Modelling Oxygen Gradients

  • Chapter
  • First Online:
Low-Oxygen Stress in Plants

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 21))

Abstract

The parts played by oxygen diffusion (and in some species, convected ‘air’) in facilitating aerobic metabolism in plants subject to soil flooding and submergence are explored. Simple diffusion equations are used to illustrate how resistance and respiration interact to create oxygen gradients and experimental and modelling examples of gradients in roots and the limitations of diffusive transport are presented and discussed. Attention is drawn to the limiting effects of diffusion especially in non-wetland species such as Arabidopsis thaliana. Here, a paucity of root gas-space and a cortical cell configuration found also in crop species, such as pea, tomato and cotton, is particularly unsuited for long-distance oxygen transport. The contrast with other more flood-tolerant Brassicas is highlighted. The relative roles of root aerenchymas and barrier formation to radial oxygen loss in improving oxygen supply and supporting root extension and phytotoxin exclusion in flooded soils are considered. Methods for monitoring radial oxygen loss from roots and oxygen concentrations both within and external to the plant are discussed, as are the results of analogue and more complex mathematical models that predict and explain the role of both diffusive and convective transport in plant aeration. Finally, pressurized gas-flow mechanisms and their ability to overcome diffusion limitations are briefly described and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although often referred to as the ‘driving force’, ΔC does not affect molecular velocities.

  2. 2.

    Mean free-path length = 67 nm.

  3. 3.

    Expressing such sudden changes in oxygen concentration by volume can be avoided by expressing data in terms of oxygen partial pressure since this does not significantly alter at an air–water interface.

  4. 4.

    The water-filled interstices through which oxygen diffuses in primary cell walls may occupy about 50 % of the total wall volume (fractional porosity, ε = 0.5) but with a tortuosity which doubles path length (τ = 0.5) (Nobel 1991). For a planar cell wall of area 1 cm2 and thickness of say 0.3 μm the diffusive resistance would be 0.3 × 10−4/2 × 10−5 × 0.5 × 0.5 × 1, or 6 s cm−3. This is a very small value (5 %) compared with the resistance across a non-occluded water path of say 25 μm which would be 25 × 10−4/2 × 10−5, or 125 s cm−3.

  5. 5.

    The degree to which the potential convection from an individual shoot is realized can be expressed as a delivery coefficient: 1 − (ΔP dP s) (Beckett et al. 2001) where ΔP d = dynamic pressure at the base during convection and ΔP s = static pressure differential (maximum pressure developed with outflow blocked and equal rates of incoming and outgoing molecules).

References

  • Abiko T, Kotula L, Shiono K, Malik AI, Colmer TD, Nakazono M (2012) Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp mays). Plant Cell Environ 35:1618–1630

    CAS  PubMed  Google Scholar 

  • Afreen F, Zobayed SMA, Armstrong J, Armstrong W (2007) Pressure gradients along whole culms and leaf sheaths, and other aspects of humidity-induced gas-transport in Phragmites australis. J Exp Bot 58:1651–1662

    CAS  PubMed  Google Scholar 

  • Aguilar EA, Turner DW, Gibbs DJ, Armstrong W, Sivasithamparam K (2003) Oxygen distribution and movement, respiration and nutrient loading in banana roots (Musa spp. L.) subjected to aerated and oxygen-depleted environments. Plant Soil 253:91–102

    CAS  Google Scholar 

  • Arkebauer TJ, Chanton JP, Verma SB, Kim J (2001) Field measurements of internal pressurization in Phragmites australis (Poaceae) and implications for regulation of methane emissions in midlatitude prairie wetland. Am J Bot 88:653–658

    CAS  PubMed  Google Scholar 

  • Armstrong W (1964) Oxygen diffusion from the roots of some British bog plants. Nature 204:801–802

    CAS  Google Scholar 

  • Armstrong W (1967) The use of polarography in the assay of oxygen diffusing from roots in anaerobic media. Physiol Plant 20:540–553

    Google Scholar 

  • Armstrong W (1968) Oxygen diffusion from the roots of woody species. Physiol Plant 21:539–543

    Google Scholar 

  • Armstrong W (1971) Radial oxygen losses from intact rice roots as affected by distance from the apex, respiration and waterlogging. Physiol Plant 25:192–197

    Google Scholar 

  • Armstrong W (1979) Aeration in higher plants. In: Woolhouse HWW (ed) Advances in botanical research, vol 7. Academic, London, pp 225–332

    Google Scholar 

  • Armstrong W (1994) Polarographic oxygen electrodes and their use in plant aeration studies. Proc R Soc Edinburgh B 102:511–528

    Google Scholar 

  • Armstrong J, Armstrong W (1990a) Light-enhanced convective throughflow increases oxygenation in rhizomes and rhizosphere of Phragmites australis (Cav.) Trin. ex Steud. New Phytol 114:121–12

    Google Scholar 

  • Armstrong J, Armstrong W (1990b) Pathways and mechanisms of oxygen transport in Phragmites australis. In: Cooper P, Findlater BC (eds) The use of constructed wetlands in water pollution control. Pergamon Press plc, Oxford, pp 529–533

    Google Scholar 

  • Armstrong J, Armstrong W (1994) A physical model involving Nuclepore membranes to investigate the mechanism of humidity-induced convection in Phragmites australis. Proc R Soc Edinburgh B 102:529–540

    Google Scholar 

  • Armstrong J, Armstrong W (2005a) Rice: sulphide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence. Ann Bot 96:625–638

    CAS  PubMed  Google Scholar 

  • Armstrong W, Armstrong J (2005b) Stem photosynthesis not pressurized ventilation is responsible for light-enhanced oxygen supply to submerged roots of Alder (Alnus glutinosa). Ann Bot 96:591–612

    CAS  PubMed  Google Scholar 

  • Armstrong J, Armstrong W (2009) Record rates of pressurized gas-flow in the great horsetail, Equisetum telmateia. Were Carboniferous Calamites similarly aerated? New Phytol 184:202–215

    CAS  PubMed  Google Scholar 

  • Armstrong J, Armstrong W (2011) Reasons for the presence or absence of convective (pressurized) ventilation in the genus Equisetum. New Phytol 190:387–397

    PubMed  Google Scholar 

  • Armstrong W, Beckett PM (1985) Root aeration in unsaturated soil: a multi-shelled model of oxygen distribution and diffusion with and without sectoral blocking of the diffusion path. New Phytol 100:293–311

    Google Scholar 

  • Armstrong W, Beckett PM (1987) Internal aeration and the development of stelar anoxia in submerged roots: a multishelled mathematical model combining axial diffusion of oxygen in the cortex with radial losses to the stele, the wall layers and the rhizosphere. New Phytol 105:221–245

    Google Scholar 

  • Armstrong W, Beckett PM (2011a) Experimental and modelling data contradict the idea of respiratory down-regulation in plant tissues at an internal [O2] substantially above the critical oxygen pressure for cytochrome oxidase. New Phytol 190:431–441

    CAS  PubMed  Google Scholar 

  • Armstrong W, Beckett PM (2011b) The respiratory down-regulation debate. New Phytol 190:276–278

    Google Scholar 

  • Armstrong W, Drew MC (2002) Root growth and metabolism under oxygen deficiency. In: Waisel Y, Eshel A, Kafkafi U (eds) Roots the hidden half, 3rd edn. Marcel Dekker Inc, New York, pp 729–761

    Google Scholar 

  • Armstrong W, Gaynard TJ (1976) The critical oxygen pressure for root respiration in intact plants. Physiol Plant 37:200–206

    CAS  Google Scholar 

  • Armstrong W, Healy MT (1984) Oxygen diffusion in pea. III. Changes in the oxygen status of the primary pea root attributable to an ageing of the tissues. New Phytol 96:179–185

    Google Scholar 

  • Armstrong W, Webb T (1985) A critical oxygen pressure for root extension in rice. J Exp Bot 36:1573–1582

    Google Scholar 

  • Armstrong W, Wright EJ (1975) Radial oxygen loss from roots: the theoretical basis for the manipulation of flux data obtained by the cylindrical platinum electrode technique. Physiol Plant 35:21–26

    Google Scholar 

  • Armstrong W, Wright EJ (1976) An electrical analogue to simulate the oxygen relations of roots in anaerobic media. Physiol Plant 36:383–387

    Google Scholar 

  • Armstrong W, Healy MT, Webb T (1982) Oxygen diffusion in pea. I. Pore-space resistance in the primary root. New Phytol 91:647–659

    Google Scholar 

  • Armstrong W, Healy MT, Lythe S (1983) Oxygen diffusion in pea. II. The oxygen status of the primary root as affected by growth, the production of laterals and radial oxygen loss. New Phytol 94:549–559

    Google Scholar 

  • Armstrong J, Armstrong W, Beckett PM (1988) Phragmites australis—a critical appraisal of the ventilating pressure concept and an analysis of resistance to pressurised gas-flow and gaseous diffusion in horizontal rhizomes. New Phytol 110:383–390

    Google Scholar 

  • Armstrong W, Armstrong J, Beckett PM, Justin SHFW (1991a) Convective gas-flows in wetland plant aeration. In: Jackson MB, Davies DD, Lambers H (eds) Plant life under oxygen stress. SPB Academic Publishing bv, The Hague, pp 283–302

    Google Scholar 

  • Armstrong W, Beckett PM, Justin SHFW, Lythe S (1991b) Modelling and other aspects of root aeration. In: Jackson MB, Davies DD, Lambers H (eds) Plant life under oxygen stress. SPB Academic Publishing bv, The Hague, pp 267–282

    Google Scholar 

  • Armstrong J, Armstrong W, Beckett PM (1992) Phragmites australis: Venturi- and humidity-induced pressure flows enhance rhizome aeration and rhizosphere oxidation. New Phytol 120:197–207

    Google Scholar 

  • Armstrong W, Strange ME, Cringle S, Beckett PM (1994) Microelectrode and modelling study of oxygen distribution in roots. Ann Bot 74:287–299

    Google Scholar 

  • Armstrong J, Armstrong W, Armstrong IB, Pittaway GR (1996a) Senescence, and phytotoxin, insect, fungal and mechanical damage: factors reducing convective gas-flows in Phragmites australis. Aquat Bot 54:211–216

    CAS  Google Scholar 

  • Armstrong J, Armstrong W, Beckett PM, Halder JE, Lythe S, Holt R, Sinclair A (1996b) Pathways of aeration and the mechanisms and beneficial effects of humidity- and Venturi-induced convections in Phragmites australis (Cav.) Trin. Ex Steud. Aquat Bot 54:177–197

    Google Scholar 

  • Armstrong W, Armstrong J, Beckett PM (1996c) Pressurised ventilation in emergent macrophytes: the mechanism and mathematical modelling of humidity-induced convection. Aquat Bot 54:121–136

    Google Scholar 

  • Armstrong W, Armstrong J, Beckett PM (1996d) Pressurised aeration in wetland macrophytes: some theoretical aspects of humidity-induced convection and thermal transpiration. Folia Geobot 31:25–36

    Google Scholar 

  • Armstrong W, Cousins D, Armstrong J, Turner DW, Beckett PM (2000) Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modelling study with Phragmites australis. Ann Bot 86:687–703

    Google Scholar 

  • Armstrong J, Jones RE, Armstrong W (2006) Rhizome phyllosphere oxygenation in Phragmites and other species in relation to redox potential, convective gas-flow, submergence and aeration pathways. New Phytol 172:719–731

    CAS  PubMed  Google Scholar 

  • Armstrong W, Webb T, Darwent M, Beckett PM (2009) Measuring and interpreting respiratory critical oxygen pressures in roots. Ann Bot 103:281–294

    PubMed  Google Scholar 

  • Asplund PT, Curtis WR (2001) Intrinsic oxygen use kinetics of transformed plant root culture. Biotechnol Prog 17:481–489

    CAS  PubMed  Google Scholar 

  • Barzu O, Satre M (1970) Determination of oxygen affinity of respiratory systems using oxy-haemoglobin as oxygen donor. Ann Biochem 36:428–433

    CAS  Google Scholar 

  • Beckett PM, Armstrong W (1992) The modelling of convection and diffusion-driven aeration in plants. In: Egginton S, Ross HF (eds) Oxygen transport in biological systems, SEB seminar series 51. Cambridge University Press, Cambridge, pp 253–293

    Google Scholar 

  • Beckett PM, Armstrong W, Justin SHFW, Armstrong J (1988) On the relative importance of convective and diffusive gas-flows in plant aeration. New Phytol 110:463–468

    Google Scholar 

  • Beckett PM, Armstrong W, Armstrong J (2001) A modelling approach to the analysis of pressure-flow in Phragmites stands. Aquat Bot 69:269–291

    Google Scholar 

  • Bendix M, Tornbjerg T, Brix H (1994) Internal gas transport in Typha latifolia L. and Typha angustifolia L. 1. Humidity-induced pressurization and convective throughflow. Aquat Bot 49:75–89

    Google Scholar 

  • Bidel LPR, Renault P, Pagès L, Rivière LM (2000) Mapping meristem respiration of Prunus persica (L) Batsch seedlings: potential respiration of the meristems, O2 diffusional constraints and combined effects on root growth. J Exp Bot 51:755–768

    CAS  PubMed  Google Scholar 

  • Blossfeld S, Gansert D, Thiele B, Kuhn J, Lösch R (2011) The dynamics of oxygen concentration, pH value, and organic acids in the rhizosphere of Juncus spp. Soil Biol Biochem 43:1186–1197

    CAS  Google Scholar 

  • Brix H, Sorrell BK, Orr PT (1992) Internal pressurization and convective gas flow in some emergent freshwater macrophytes. Limnol Oceanogr 37:1420–1433

    Google Scholar 

  • Brix H, Sorrell BK, Schierup H-H (1996) Gas fluxes achieved by in situ convective flow in Phragmites australis. Aquat Bot 54:151–163

    Google Scholar 

  • Carvalho EB, Curtis WR (1998) Characterization of fluid-flow resistance in root cultures with a convective flow tubular bioreactor. Biotechnol Bioeng 60:375–384

    CAS  PubMed  Google Scholar 

  • Colmer TD (2003a) Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep water rice (Oryza sativa L.). Ann Bot 91:301–309

    CAS  PubMed  Google Scholar 

  • Colmer TD (2003b) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26:17–36

    CAS  Google Scholar 

  • Colmer TD, Pedersen O (2008a) Oxygen dynamics in submerged rice (Oryza sativa). New Phytol 178:326–334

    CAS  PubMed  Google Scholar 

  • Colmer TD, Pedersen O (2008b) Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO2 and O2 exchange. New Phytol 177:918–926

    CAS  PubMed  Google Scholar 

  • Colmer TD, Cox MCH, Voesenek LACJ (2006) Root aeration in rice (Oryza sativa): evaluation of oxygen, carbon dioxide and ethylene as possible regulators of root acclimatizations. New Phytol 170:767–778

    CAS  PubMed  Google Scholar 

  • Colmer TD, Gibberd MR, Wiengweera A, Tinh TK (1998) The barrier to radial oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solution. J Exp Bot 49:1431–1436

    CAS  Google Scholar 

  • Cormack RGH (1947) A comparative study of developing epidermal cells in white mustard and tomato roots. Am J Bot 34:310–314

    Google Scholar 

  • Currie JA (1962) The importance of aeration in providing the right conditions for plant growth. J Sci Food Agric 13:380–385

    CAS  Google Scholar 

  • Currie JA (1965) Diffusion within the soil microstructure: a structural parameter for soil. J Soil Sci 16:279–289

    Google Scholar 

  • Curtis WR, Tuerk AL (2008) Oxygen transport in plant tissue culture systems. In: Gupta SD, Ibaraki Y (eds) Plant tissue culture engineering. Springer, New York, pp 173–186

    Google Scholar 

  • Dacey JWH (1980) Internal winds in water lilies: an adaptation for life in anaerobic sediments. Science 210:1017–1019

    CAS  PubMed  Google Scholar 

  • Darwent MJ (1997) The development and use of microelectrodes for the study of oxygen transport and distribution in roots. PhD thesis, University of Hull, Yorkshire

    Google Scholar 

  • Darwent MJ, Armstrong W, Armstrong J, Beckett PM (2003) Exploring the radial and longitudinal aeration of primary maize roots by means of Clark-type oxygen microelectrodes. Russ J Plant Physiol 50:723–732

    Google Scholar 

  • Denison RF (1992) Mathematical modeling of oxygen diffusion and respiration in legume root nodules. Plant Physiol 98:901–907

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dittert K, Wötzel J, Sattelmacher B (2006) Responses of Alnus glutinosa to anaerobic conditions—mechanisms and rate of oxygen flux into the roots. Plant Biol 8:212–223

    CAS  PubMed  Google Scholar 

  • Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular organisation of the Arabidopsis thaliana root. Development 119:71–84

    CAS  PubMed  Google Scholar 

  • Garthwaite AJ, Armstrong W, Colmer TD (2008) Assessment of the O2 diffusivity across the barrier to radial O2 loss in adventitious roots of Hordeum marinum. New Phytol 179:405–416

    CAS  PubMed  Google Scholar 

  • Gaynard TJ, Armstrong W (1987) Some aspects of internal plant aeration in amphibious habitats. In: Crawford RMM (ed) Amphibious and intertidal plants, British Ecological Society special symposium 5. Blackwells, Oxford, pp 303-320

    Google Scholar 

  • Gibbs J, Greenway H (2003a) Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:1–47

    CAS  Google Scholar 

  • Gibbs J, Greenway H (2003b) Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes. Funct Plant Biol 30:999–1036

    Google Scholar 

  • Gibbs J, Turner DW, Armstrong W, Darwent MJ, Greenway H (1998) Response to oxygen deficiency in maize roots I. Development of O2-deficiency in the stele reduces radial solute transport to the xylem. Funct Plant Biol 25:745–758

    CAS  Google Scholar 

  • Greenwood DJ, Goodman D (1971) Studies on the oxygen supply to the roots of mustard seedlings (Sinapsis alba L.). New Phytol 70:85–96

    Google Scholar 

  • Groot TT, van Bodegom PM, Meijer HAJ, Harren FJM (2005) Gas transport through the root-shoot transition zone of rice tillers. Plant Soil 277:107–116

    CAS  Google Scholar 

  • Grosse W (1996) Pressurised ventilation in floating-leaved aquatic macrophytes. Aquat Bot 54:137–150

    Google Scholar 

  • Healy MT, Armstrong W (1972) The effectiveness of internal oxygen transport in a mesophyte (Pisum sativum L.). Planta 103:302–309

    Google Scholar 

  • Ho QT, Verlinden BE, Verboven P, Vandewalle S, Nicolaï BM (2006) A permeation-diffusion-reaction model of gas transport in cellular tissue of plant materials. J Exp Bot 57:4215–4224

    CAS  PubMed  Google Scholar 

  • Ho QT, Verboven P, Verlinden BE, Nicolaï B (2010) A model for gas transport in pear fruit at multiple scales. J Exp Bot 61:2071–2081

    CAS  PubMed  Google Scholar 

  • Hook DD, Brown CL (1972) Permeability of the cambium to air in trees adapted to wet habitats. Bot Gaz 133:304–310

    Google Scholar 

  • Huck MG (1970) Variation in taproot elongation rate as influenced by composition of the soil air. Agron J 62:815–818

    Google Scholar 

  • Jackson MB, Armstrong W (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol 1:274–287

    CAS  Google Scholar 

  • Jensen SI, Kühl M, Glud RN, Jørgensen LB, Priemé A (2005) Oxic microzones and radial oxygen loss from roots of Zostera marina. Mar Ecol Prog Ser 293:49–58

    CAS  Google Scholar 

  • Jung J, Lee SC, Choi H-K (2008) Anatomical patterns of aerenchyma in aquatic and wetland plants. J Plant Biol 51:428–439

    Google Scholar 

  • Justin SHFW, Armstrong W (1983) Oxygen transport in the salt-marsh genus Puccinellia with particular reference to the diffusive resistance of the root-shoot junction and the use of paraffin oil as a diffusive barrier in plant studies. J Exp Bot 34:980–986

    Google Scholar 

  • Justin SHFW, Armstrong W (1987) The anatomical characteristics of roots and plant response to soil flooding. New Phytol 106:465–495

    Google Scholar 

  • Kirk GHD, Greenway H, Atwell BJ, Ismail AM, Colmer TD (2014) Adaptation of rice to flooded soils. Prog Bot 75:215–253

    Google Scholar 

  • Kotula L, Steudle E (2009) Measurements of oxygen permeability coefficient of rice (Oryza sativa L.) roots using a new perfusion technique. J Exp Bot 60:567–580

    CAS  PubMed  Google Scholar 

  • Laan P, Smolders A, Blom CWPM, Armstrong W (1989) The relative roles of internal aeration, radial oxygen losses, iron exclusion and nutrient balance in flood-tolerance in Rumex species. Acta Bot Neerl 38:131–145

    Google Scholar 

  • Laisk A, Oja V, Eichelmann H (2007) Kinetics of leaf oxygen uptake represent in planta activities of respiratory electron transport and terminal oxidases. Physiol Plant 131:1–9

    CAS  PubMed  Google Scholar 

  • Lammertyn J, Franck C, Verlinden BE, Nicolaï BM (2001) Comparative study of the O2, CO2 and temperature effect on respiration between ‘Conference’ pear cell protoplasts in suspension and intact pears. J Exp Bot 52:1769–1777

    CAS  PubMed  Google Scholar 

  • Lammertyn J, Scheerlinck N, Jancso’ KP, Verlinden BE, Nicolaï BM (2003) A respiration–diffusion model for ‘Conference’ pears I: model development and validation. Postharvest Biol Technol 30:29–42

    Google Scholar 

  • Lee SC, Mustroph A, Sasidharan R, Vashisht D, Pedersen O, Oosumi T, Voesenek LACJ, Bailey-Serres J (2011) Molecular characterization of the submergence response of the Arabidopsis thaliana ecotype Columbia. New Phytol 190:457–471

    CAS  PubMed  Google Scholar 

  • Lemon ER, Wiegand CL (1962) Soil aeration and plant root relations. II. Root respiration. Agron J 54:171–175

    Google Scholar 

  • Leuning R (1983) Transport of gases into leaves. Plant Cell Environ 6:181–194

    CAS  Google Scholar 

  • Luxmoore RJ, Stolzy LH, Letey J (1970) Oxygen diffusion in the soil-plant system. I. A model; II. Respiration, permeability and porosity of consecutive excised segments of maize and rice roots; III. Oxygen concentration profiles predicted for maize roots; IV. Oxygen concentration profiles predicted for rice roots. Agron J 62:322–332

    Google Scholar 

  • Maggio A, Hasegawa PM, Bressan RA, Consiglio MF, Joly J (2001) Unravelling the functional relationship between root anatomy and stress tolerance. Aust J Plant Physiol 28:999–1004

    Google Scholar 

  • Malik AL, Islam AKMR, Colmer TD (2011) Transfer of the barrier to radial oxygen loss in roots of Hordeum marinum to wheat (Triticum aestivum): evaluation of four H. marinum-wheat amphiploids. New Phytol 190:499–508

    CAS  PubMed  Google Scholar 

  • Mancusco S, Papeschi G, Marras AM (2000) A polarographic, oxygen-selective, vibrating micro-electrode system for the spatial and temporal characterization of transmembrane fluxes in plants. Planta 211:384–389

    Google Scholar 

  • Mancuso S, Boselli ÆM (2002) Characterisation of the oxygen fluxes in the division, elongation and mature zones of Vitis roots: influence of oxygen availability. Planta 214:767–774

    CAS  PubMed  Google Scholar 

  • Mano Y, Omori F (2007) Breeding for flooding tolerant maize using ‘teosinte’ as a germplasm resource. Plant Root 1:17–21

    CAS  Google Scholar 

  • Matthews PGD, Seymour RS (2013) Stomata actively regulate internal aeration of the sacred lotus Nelumbo nucifera. Plant Cell Environ doi: 10.111/pce.12163

    Google Scholar 

  • McDonald MP, Galwey NW, Colmer TD (2002) Similarity and diversity in adventitious root anatomy as related to root aeration among a range of wetland and dryland grass species. Plant Cell Environ 25:441–451

    Google Scholar 

  • McLamore ES, Jaroch D, Chatni MR, Porterfield DM (2010) Self-referencing optrodes for measuring spatially resolved, real-time metabolic oxygen flux in plant systems. Planta 232:1087–1099

    CAS  PubMed  Google Scholar 

  • Mevi-Schutz J, Grosse W (1988a) The importance of water vapour for the circulating air-flow through Nelumbo nucifera. J Exp Bot 39:1231–1236

    Google Scholar 

  • Mevi-Schutz J, Grosse W (1988b) A two-way gas-transport system in Nelumbo nucifera. Plant Cell Environ 11:27–34

    Google Scholar 

  • Millar AH, Bergersen FJ, Day DA (1994) Oxygen affinity of terminal oxidases in soybean mitochondria. Plant Physiol Biochem 32:847–852

    CAS  Google Scholar 

  • Mommer L, Pedersen O, Visser EJW (2004) Acclimation of a terrestrial plant to submergence facilitates gas exchange under water. Plant Cell Environ 27:1281–1287

    Google Scholar 

  • Nobel PS (1991) Physicochemical and environmental plant physiology. Academic, San Diego

    Google Scholar 

  • Pedersen O, Vos H, Colmer TD (2006) Oxygen dynamics during submergence in the halophytic stem succulent Halosarcia pergranulata. Plant Cell Environ 29:1388–1399

    CAS  PubMed  Google Scholar 

  • Rawsthorne S, LaRue TA (1986) Metabolism under microaerobic conditions of mitochondria from Cowpea nodules. Plant Physiol 81:1097–1102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Revsbech NP (1989) An oxygen microsensor with a guard cathode. Limnol Oceanogr 34:474–478

    CAS  Google Scholar 

  • Revsbech NP, Pedersen O, Reichardt W, Briones A (1999) Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions. Biol Fertil Soils 29:379–385

    Google Scholar 

  • Rich SM, Ludwig M, Pedersen O, Colmer TD (2011) Aquatic adventitious roots of the wetland plant Meionectes brownie can photosynthesize: implications for root function during flooding. New Phytol 190:311–319

    PubMed  Google Scholar 

  • Rolletschek H, Bumiller A, Henze R, Kohl J-G (1998) Implications of missing efflux sites on convective ventilation and amino acid metabolism in Phragmites australis. New Phytol 140:211–217

    CAS  Google Scholar 

  • Rolletschek H, Borisjuk L, Koschorrek M, Wobus U, Weber H (2002) Legume embryos develop in a hypoxic environment. J Exp Bot 53:1099–1107

    CAS  PubMed  Google Scholar 

  • Rolletschek H, Radchuk R, Klukas C, Schreiber F, Wobus U, Borisjuk L (2005) Evidence of a key role for photosynthetic oxygen release in oil storage in developing soybean seeds. New Phytol 167:777–786

    CAS  PubMed  Google Scholar 

  • Sand-Jensen K, Pedersen O, Binzer T, Borum J (2005) Contrasting oxygen dynamics in the freshwater isoetid Lobelia dortmanna and the marine seagrass Zostera marina. Ann Bot 96:613–623

    PubMed  Google Scholar 

  • Schröder P, Grosse W, Woermann D (1986) Localisation of thermo-osmotically active partitions in young leaves of Nuphar lutea. J Exp Bot 37:1450–1461

    Google Scholar 

  • Seago JL Jr, Marsh LC, Stevens KJ, Soukup A, Votrubova O, Enstone DE (2005) A re-examination of the root cortex in wetland flowering plants with respect to aerenchyma. Ann Bot 96:565–579

    PubMed  Google Scholar 

  • Shiao T-L, Doran PM (2000) Root hairiness: effect on fluid flow and oxygen transfer in hairy root cultures. J Biotechnol 83:199–210

    CAS  PubMed  Google Scholar 

  • Shimamura S, Mochizuki T, Nada Y, Fukuyama M (2003) Formation and function of secondary aerenchyma in hypocotyl, roots and nodules of soybean (Glycine max) under flooded conditions. Plant Soil 251:351–359

    CAS  Google Scholar 

  • Shimamura S, Yamamoto R, Nakamura T, Shimada S, Komatsu S (2010) Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil. Ann Bot 106:277–284

    PubMed  Google Scholar 

  • Shiono K, Ogawa S, Yamazaki S, Isoda H, Fujimura T, Nakazono M, Colmer TD (2011) Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths. Ann Bot 107:89–99

    CAS  PubMed  Google Scholar 

  • Smirnoff N, Crawford RMM (1983) Variation in the structure and response to flooding of root aerenchyma in some wetland plants. Ann Bot 51:237–249

    Google Scholar 

  • Sorrell BK, Boon PI (1994) Convective gas flow in Eleocharis sphacelata R. Br.: methane transport and release from wetlands. Aquat Bot 47:197–212

    CAS  Google Scholar 

  • Sorrell BK, Hawes I (2010) Convective gas flow development and the maximum depths achieved by helophyte vegetation in lakes. Ann Bot 105:165–174

    PubMed  Google Scholar 

  • Sorrell BK, Tanner CC (2000) Convective gas flow and internal aeration in Eleocharis sphacelata in relation to water depth. J Ecol 88:778–789

    Google Scholar 

  • Sorrell BK, Brix H, Orr PT (1997) Eleocharis sphacelata: internal gas transport pathways and modelling of aeration by pressurized flow and diffusion. New Phytol 136:433–442

    Google Scholar 

  • Sorrell BK, Mendelssohn IA, McKee KL, Woods R (2000) Ecophysiology of wetland plant roots: a modelling comparison of aeration in relation to species distribution. Ann Bot 86:675–685

    Google Scholar 

  • Soukup A, Armstrong W, Schreiber L, Franke R, Votrubová O (2007) Apoplastic barriers to radial oxygen loss (ROL) and solute penetration: a chemical and functional comparison of the exodermis of two wetland species—Phragmites australis and Glyceria maxima. New Phytol 173:264–278

    CAS  PubMed  Google Scholar 

  • Steinberg SL (1996) Mass and energy exchange between the atmosphere and leaf influence gas pressurization in aquatic plants. New Phytol 134:587–600

    Google Scholar 

  • Stevens KJ, Peterson RL, Reader RJ (2002) The aerenchymatous phellem of Lythrum salicaria (L.): a pathway for gas transport and its role in flood tolerance. Ann Bot 89:621–625

    PubMed  Google Scholar 

  • Teakle NL, Armstrong J, Barrett-Lennard EG, Colmer TD (2011) Aerenchymatous phellem in hypocotyl and roots enables O2 transport in Melilotus siculus. New Phytol 190:340–350

    CAS  PubMed  Google Scholar 

  • Thomas AL, Guerreiro SMC, Sodek L (2005) Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean. Ann Bot 96:1191–1198

    CAS  PubMed  Google Scholar 

  • Tornbjerg T, Bendix M, Brix H (1994) Internal gas transport in Typha latifolia L. and Typha angustifolia L. 2. Convective throughflow pathways and ecological significance. Aquat Bot 49:91–105

    Google Scholar 

  • Tschiersch H, Liebsch G, Stangelmayer A, Borisjuk L, Rolletschek H (2011) Planar oxygen sensors for non-invasive imaging in experimental biology. In: Minin I (ed) Microsensors. InTech, New York, pp 281–294. ISBN 978-953-307-170-1. doi: 10.5772/17893

  • Vashisht D, Hesselink A, Pierik R, Ammerlaan JMH, Bailey-Serres J, Visser EJW, Pedersen O, van Zanten M, Vreugdenhill D, Jamar DCL, Voesenek LACJ, Sasidharan R (2011) Natural variation of submergence tolerance among Arabidopsis thaliana accessions. New Phytol 190:299–310

    CAS  PubMed  Google Scholar 

  • Verboven P, Pedersen O, Herremans E, Ho QT, Nicolaı BM, Colmer TD, Teakle N (2011) Root aeration via aerenchymatous phellem: three-dimensional micro-imaging and radial O2 profiles in Melilotus siculus. New Phytol 193:420–431

    PubMed  Google Scholar 

  • Visser EJW, Colmer TD, Blom CWPM, Voesenek LACJ (2000) Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma. Plant Cell Environ 23:1237–1245

    Google Scholar 

  • Voesenek LACJ, Armstrong W, Bogemann GM, Colmer TD (1999) A lack of aerenchyma and high rates of radial oxygen loss from the root base contribute to waterlogging intolerance in Brassica napus. Funct Plant Biol 26:87–93

    Google Scholar 

  • Vretare-Strand V (2002) The influence of ventilation systems on water depth penetration of emergent macrophytes. Freshwater Biol 47:1097–1105

    Google Scholar 

  • Vretare-Strand V, Weisner SEB (2002) Interactive effects of pressurized ventilation, water-depth and substrate conditions on Phragmites australis. Oecologia 131:490–497

    Google Scholar 

  • Waters I, Armstrong W, Thomson CJ, Setter TL, Adkins S, Gibbs J, Greenway H (1989) Diurnal changes in radial oxygen loss and ethanol metabolism in roots of submerged and non-submerged rice seedlings. New Phytol 113:439–451

    CAS  Google Scholar 

  • Webb T, Armstrong W (1983) The effects of CN and salicylhydroxamic acid on the root respiration of pea seedlings. Plant Physiol 72:280–286

    CAS  PubMed Central  PubMed  Google Scholar 

  • White SD, Ganf GG (1998) The influence of convective flow on rhizome length in Typha domingensis over a water depth gradient. Aquat Bot 62:57–70

    Google Scholar 

  • White SD, Deegan BM, Ganf GG (2007) The influence of water level fluctuations on the potential for convective flow in the emergent macrophytes Typha domingensis and Phragmites australis. Aquat Bot 86:369–376

    Google Scholar 

  • Winkel A, Colmer TD, Pedersen O (2011) Leaf gas films of Spartina anglica enhance rhizome and root oxygen during tidal submergence. Plant Cell Environ 34:2083–2092

    CAS  PubMed  Google Scholar 

  • Winkel A, Colmer TD, Ismail AM, Pedersen O (2013) Internal aeration of paddy field rice (Oryza sativa L.) during complete submergence: importance of light and floodwater O2. New Phytol 197(4):1193–1203

    CAS  PubMed  Google Scholar 

  • Yamasaki T (1952) Studies on the ‘excess moisture injury’ of upland crops in overmoist soil from the viewpoint of soil chemistry and plant physiology (Japanese with English summary). Bull Nat Inst Agric Sci (Japan) B 1:1–92

    Google Scholar 

  • Yamauchi T, Rajhi I, Nakazono M (2011) Lysigenous aerenchyma formation in maize root is confined to cortical cells by regulation of genes related to generation and scavenging of reactive oxygen species. Plant Signal Behav 65:759–761

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Armstrong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Armstrong, W., Armstrong, J. (2014). Plant Internal Oxygen Transport (Diffusion and Convection) and Measuring and Modelling Oxygen Gradients. In: van Dongen, J., Licausi, F. (eds) Low-Oxygen Stress in Plants. Plant Cell Monographs, vol 21. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1254-0_14

Download citation

Publish with us

Policies and ethics