Skip to main content

Phase-Field Models

  • Chapter

Part of the book series: CISM Courses and Lectures ((CISM,volume 538))

Abstract

Phase-field models have become popular in recent years to describe a host of free-boundary problems in various areas of research. The key point of the phase-field approach is that surfaces and interfaces are implicitly described by continuous scalar fields that take constant values in the bulk phases and vary continuously but steeply across a diffuse front. In the present contribution, a distinction is made between models in which the phase field can be identified with a physical quantity (coarse-grained on a mesoscopic scale), and models in which the phase field can only be interpreted as a smoothed indicator function. Simple diffuse-interface models for the motion of magnetic domain walls, the growth of precipitates in binary alloys, and for solidification are reviewed, and it is pointed out that is such models the free energy function determines both the bulk behavior of the dynamic variable and the properties of the interface. Next, a phenomenological phase-field model for solidification is introduced, and it is shown that with a proper choice of some interpolation functions, surface and bulk properties can be adjusted independently in this model. The link between this phase-field model and the classic free-boundary formulation of solidification is established by the use of matched asymptotic analysis. The results of this analysis can then be exploited to design new phase-field models that cannot be derived by the standard variational procedure from simple free energy functionals within the thermodynamic framework. As examples for applications of this approach, the solidification of alloys and the advected field model for two-phase flow are briefly discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • R. F. Almgren. Second-order phase field asymptotics for unequal conductivities. SIAM J. Appl. Math., 59:2086–2107, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  • D. M. Anderson, G. B. McFadden, and A. A. Wheeler. Diffuse-interface methods in fluid mechanics. Annual Review of Fluid Mechanics, 30:139, 1998.

    Article  MathSciNet  Google Scholar 

  • D. M. Anderson, G. B. McFadden, and A. A. Wheeler. A phase-field model of solidification with convection. PHYSICA D, 135:175–194, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  • M. J. Aziz. Model for the solute redistribution during rapid solidification. J. Appl. Phys., 53(2):1158, 1982.

    Article  Google Scholar 

  • J. Beaucourt, T. Biben, and C. Verdier. Elongation and burst of axisymmetric viscoelastic droplets: A numerical study. Phys. Rev. E, 71:066309, 2005.

    Google Scholar 

  • C. Beckermann, H.-J. Diepers, I. Steinbach, A. Karma, and X. Tong. Modeling melt convection in phase-field simulations of solidification. J. Comput. Phys., 154:468, 1999.

    Article  MATH  Google Scholar 

  • T. Biben, C. Misbah, A. Leyrat, and C. Verdier. An advected-field approach to the dynamics of fluid interfaces. Europhys. Lett., 63:623, 2003.

    Article  Google Scholar 

  • T. Biben, K. Kassner, and C. Misbah. Phase-field approach to three-dimensional vesicle dynamics. Phys. Rev. E, 72:041921, 2005.

    Article  Google Scholar 

  • W. J. Boettinger, J. A. Warren, C. Beckermann, and A. Karma. Phase-field simulation of solidification. Annu. Rev. Mater. Res., 32:163–194, 2002.

    Article  Google Scholar 

  • A. J. Bray. Theory of Phase-ordering kinetics. Adv. Phys., 43:357–459, 1994.

    Article  MathSciNet  Google Scholar 

  • Q. Bronchart, Y. Le Bouar, and A. Finel. New coarse-grained derivation of a phase field model for precipitation. Phys. Rev. Lett., 100:015702, 2008.

    Article  Google Scholar 

  • G. Caginalp. Stefan and hele-shaw type models as asymptotic limits of the phase-field equations. Phys. Rev. A, 39:5887–5896, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  • J. W. Cahn and J. E. Hilliard. Free energy of a non-uniform system. 1. interfacial free energy. J. Chem. Phys., 28:258–267, 1958.

    Article  Google Scholar 

  • L.-Q. Chen. Phase-field models for microstructure evolution. Annu. Rev. Mater. Res., 32:113, 2002.

    Article  Google Scholar 

  • J. B. Collins and H. Levine. Diffuse interface model of diffusion-limited crystal growth. Phys. Rev. B, 31:6119–6122, 1985.

    Article  Google Scholar 

  • B. Echebarria, R. Folch, A. Karma, and M. Plapp. Quantitative phase-field model of alloy solidification. Phys. Rev. E, 70(6):061604, 2004.

    Article  Google Scholar 

  • K. R. Elder, M. Grant, N. Provatas, and J. M. Kosterlitz. Sharp interface limits of phase-field models. Phys. Rev. E, 64:021604, 2001.

    Article  Google Scholar 

  • H. Emmerich. Advances of and by phase-field modelling in condensed-matter physics. Adv. Phys., 57(1):1–87, 2008.

    Article  Google Scholar 

  • G. J. Fix. In A. Fasano and M. Primicerio, editors, Free boundary problems: Theory and applications, page 580, Boston, 1983. Piman.

    Google Scholar 

  • R. Folch, J. Casademunt, A. HernándezMachado, and L. Ramírez Piscina. Phase-field model for hele-shaw flows with arbitrary viscosity contrast. i. theoretical approach. Phys. Rev. E, 60(2):1724, 1999.

    Article  Google Scholar 

  • M. E. Glicksman, M. B. Koss, and E. A. Winsa. Dendritic growth velocities in microgravity. Phys. Rev. Lett., 73:573–576, 1994.

    Article  Google Scholar 

  • T. Haxhimali, A. Karma, F. Gonzales, and M. Rappaz. Orientation selection in dendritic evolution. Nature Materials, 5:660–664, 2006.

    Article  Google Scholar 

  • P. C. Hohenberg and B. I. Halperin. Theory of dynamic critical phenomena. Rev. Mod. Phys., 49:435–479, 1977.

    Article  Google Scholar 

  • J. J. Hoyt, M. Asta, and A. Karma. Atomistic and continuum modeling of dendritic solidification. Mat. Sience Eng. R, 41:121, 2003.

    Article  Google Scholar 

  • D. Jacqmin. Calculation of two-phase Navier-Stokes flows using phase-field modeling. J. Comput. Phys., 155:96–127, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  • D. Jamet and C. Misbah. Thermodynamically consistent picture of the phase-field model of vesicles: Elimination of the surface tension. Phys. Rev. E, 78:041903, 2008.

    Article  Google Scholar 

  • D. Jamet, O. Lebaigue, N. Coutris, and J. M. Delhaye. The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change. J. Comput. Phys., 169:624–651, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  • A. Karma. Phase-field formulation for quantitative modeling of alloy solidification. Phys. Rev. Lett., 87(10):115701, 2001.

    Article  Google Scholar 

  • A. Karma and W.J. Rappel. Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys. Rev. E, 53(4):R3017–R3020, 1996.

    Article  Google Scholar 

  • A. Karma and W.J. Rappel. Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E, 57(4):4323–4349, 1998.

    Article  MATH  Google Scholar 

  • A. Karma, Y. H. Lee, and M. Plapp. Three-dimensional dendrite-tip morphology at low undercooling. Phys. Rev. E, 61(4, Part B):3996–4006, APR 2000.

    Article  Google Scholar 

  • J. S. Langer. An introduction to the kinetics of first-order phase transitions. In C. Godrèche, editor, Solids far from equilibrium, Edition Aléa Saclay, pages 297–363, Cambridge, UK, 1991. Cambridge University Press.

    Google Scholar 

  • J. S. Langer. Models of pattern formation in first-order phase transitions. In G. Grinstein and G. Mazenko, editors, Directions in Condensed Matter Physics, pages 165–186, Singapore, 1986. World Scientific.

    Google Scholar 

  • S. Nguyen, R. Folch, V. K. Verma, H. Henry, and M. Plapp. Phase-field simulations of viscous fingering in shear-thinning fluids. Phys. Fluids, 22:103102, 2010.

    Article  Google Scholar 

  • M. Ohno and K. Matsuura. Quantitative phase-field modeling for dilute alloy solidification involving diffusion in the solid. Phys. Rev. E, 79(3): 031603, 2009.

    Article  Google Scholar 

  • O. Penrose and P. C. Fife. Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Physica D, 43:44–62, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Plapp. Three-dimensional phase-field simulations of directional solidification. J. Cryst. Growth, 303:49–57, 2007.

    Article  Google Scholar 

  • M. Plapp. Remarks on some open problems in phase-field modelling of solidification. Phil. Mag., 91:25–44, 2011.

    Article  Google Scholar 

  • J. S. Rowlinson. Translation of J. D. van der Waals, The Thermodynamic Theory of Capillarity under the Hypothesis of a Continuous Variation of Density. J. Stat. Phys., 20:197–244, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  • I. Steinbach. Phase-field models in materials science. Model. Simul. Mater. Sci. Eng., 17(7):073001, OCT 2009.

    Article  MathSciNet  Google Scholar 

  • W. van Saarloos. Front propagation into unstable states. Phys. Reports, 386:29–222, 2003.

    Article  MATH  Google Scholar 

  • Y. Wang and J. Li. Phase field modeling of defects and deformation. Acta Mater., 58:1212–1235, 2010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 CISM, Udine

About this chapter

Cite this chapter

Plapp, M. (2012). Phase-Field Models. In: Mauri, R. (eds) Multiphase Microfluidics: The Diffuse Interface Model. CISM Courses and Lectures, vol 538. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1227-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1227-4_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1226-7

  • Online ISBN: 978-3-7091-1227-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics