Skip to main content

Part of the book series: CISM Courses and Lectures ((CISM,volume 537))

Abstract

Decades ago, it has been recognized that for some materials the kinematics on meso- and micro-structural scale needs to be considered, if the material’s resistance to deformation exhibits a finite radius of interaction on atomic or molecule level, e.g. (1963); (1964) outlined that this is the case if the deformation wave length approaches micro-structural length scale. Differently said, if the external loading corresponds material entities smaller than the representative volume element (RVE), then the statistical average of the macro-scopical material behaviour does not hold anymore. In this sense the fluctuation of deformation on micro-structural level as well as relative motion of micro-structural constituens, such as granule, crystalline or other heterogeneous aggregates, influence the material response on macro-structural level. Consequently, field equations based on the assumption of micro-scopically homogeneous material have to be supplemented and enriched to also include non-local and higher-order contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • E.C. Aifantis. Strain gradient interpretation of size effects. International Journal for Fracture, 95:299–314, 1999.

    Article  Google Scholar 

  • S. Akarapu and H.M. Zbib. Numerical analysis of plane cracks in straingradient elastic materials. International Journal of Fracture, 141:403–430, 2006.

    Article  MATH  Google Scholar 

  • R.K. Abu Al-Rub and G.Z. Voyiadjis. Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro-and nano-indentation experiments. International Journal of Plasticity, 20:1139–1182, 2004.

    Article  MATH  Google Scholar 

  • E.M. Arruda and M.C. Boyce. A three-dimensional constitutive model for the large stretch behaviour of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 41:389–412, 1998.

    Article  Google Scholar 

  • T. Bennett, I.M. Gitman, and H. Askes. Elasticity theories with higherorder gradients of inertia and stiffness for the modelling of wave dispersion in laminates. Int. J. Fracture, 148:185–193, 2007.

    Article  Google Scholar 

  • J.F. Besseling. Irreversible Aspects of Continuum Mechanics, chapter A thermodynamic approach to rheology. Springer, Wien, 1968.

    Google Scholar 

  • S.R. Bodner and Y. Partom. Constitutive equations for elastic-viscoplastic strain-hardening materials. ASME, J. Appl. Mech., 42:385–389, 1975.

    Article  Google Scholar 

  • F. Brickell and R.S. Clark. Differentiable Manifolds. Van Nostrand Reinhold Company, London, 1970.

    MATH  Google Scholar 

  • H. Bufler. The biot stresses in nonlinear elasticity and the associated generalized variational principles. Ing. Archiv, 55:450–463, 1985.

    Article  MATH  Google Scholar 

  • R. Chambon, D. Cailleriea, and C. Tamagnini. A strain space gradient plasticity theory for finite strain. Computer Methods in Applied Mechanics and Engineering, 193:2797–2826, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  • H. Chen, G. Hu, and Z. Huang. Effective moduli for micropolar composite with interface effect. International Journal of Solids and Structures, 44: 8106–8118, 2007.

    Article  MATH  Google Scholar 

  • Y. Choquet-Bruhat, C. DeWitt-Morette, and M. Dillard-Bleick. Analysis, Manifolds and Physics Part I. North-Holland, Amsterdam, 1982.

    Google Scholar 

  • E. Cosserat and F. Cosserat. Théorie des corps déformables. A. Hermann & Fils, Paris, 1909.

    Google Scholar 

  • R. de Borst. A generalization of j 2-flow theory for polar continua. Computer Methods in Applied Mechanics and Engineering, 103:347–362, 1993.

    Article  MATH  Google Scholar 

  • T. Dillard, S. Forest, and P. Iennyb. Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams. European Journal of Mechanics A/Solids, 25:526–549, 2006.

    Article  MATH  Google Scholar 

  • B.A. Dubrovin, A.T. Fomenko, and S.P. Novikov. Modern Geometry-Methods and Applications I. Springer-Verlag, New York, 1984.

    MATH  Google Scholar 

  • M. Epstein and M. de Leon. Geometrical theory of uniform cosserat media. Journal of Geometry and Physics, 26:127–170, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  • J.L. Ericksen and C. Truesdell. Exact theory of stress and strain in rods and shells. Archive for Rational Mechanics and Analysis, 1:295–323, 1957.

    Article  MathSciNet  Google Scholar 

  • A.C. Eringen. Linear theory of micropolar viscoelasticity. International Journal of Engineering Science, 5:191–204, 1967.

    Article  MATH  Google Scholar 

  • A.C. Eringen. Micropolar fluids with stretch. International Journal of Engineering Science, 7:115–127, 1969.

    Article  MATH  Google Scholar 

  • A.C. Eringen. Theory of micromorphic materials with memory. International Journal of Engineering Science, 10:623–641, 1972.

    Article  MATH  Google Scholar 

  • A.C. Eringen. Microcontinuum field theories I: Foundations and Solids. Springer, New York, 1999.

    Book  MATH  Google Scholar 

  • A.C. Eringen and C.B. Kafadar. Continuum Physics IV. Academic Press, New York, 1976.

    Google Scholar 

  • N.A. Fleck and J.R. Willis. A mathematical basis for strain-gradient plasticity theory. part ii: Tensorial plastic multiplier. Journal of the Mechanics and Physics of Solids, 57:1045–1057, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  • N.A. Fleck, G.M. Mller, M.F. Ashby, and J.W. Hutchinson. Strain gradient plasticity: theory and experiment. Acta Metallurgica et Materialia, 42: 475–487, 1994.

    Article  Google Scholar 

  • S. Forest. Micromorphic approach for gradient elasticity, viscoplasticity, and damage. Journal of Engineering Mechanics, 135:117–131, 2009.

    Article  Google Scholar 

  • S. Forest and R. Sievert. Nonlinear microstrain theories. International Journal of Solids and Structures, 43:7224–7245, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  • S. Forest, G. Cailletaud, and R. Sievert. A cosserat theory for elastoviscoplastic single crystals at finite deformation. Archives of Mechanics, 49:705–736, 1997.

    MATH  MathSciNet  Google Scholar 

  • S. Forest, F. Barbe, and G. Cailletaud. Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials. International Journal of Solids and Structures, 37:7105–7126, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  • X.-L. Gao and H.M. Ma. Solution of eshelby’s inclusion problem with a bounded domain and eshelby’s tensor for a spherical inclusion in a finite spherical matrix based on a simplified strain gradient elasticity theory. Journal of the Mechanics and Physics of Solids, 58:779–797, 2010.

    Article  MathSciNet  Google Scholar 

  • P. Grammenoudis and C. Tsakmakis. Isotropic hardening in micropolar plasticity. Archive of Applied Mechanics, 79:323–334, 2009.

    Article  MATH  Google Scholar 

  • P. Grammenoudis, C. Tsakmakis, and D. Hofer. Micromorphic continuum. part ii finite deformation plasticity coupled with damage. International Journal of Non-Linear Mechanics, 44:957–974, 2009.

    Article  Google Scholar 

  • P. Gudmundson. A unified treatment of strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 52:1379–1406, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  • M.E. Gurtin and N. Ohno. A gradient theory of small-deformation, singlecrystal plasticity that accounts for gnd-induced interactions between slip systems. Journal of the Mechanics and Physics of Solids, 59:320–343, 2011.

    Article  MathSciNet  Google Scholar 

  • C.-S. Han, H. Gao, Y. Huang, and W.D. Nix. Mechanism-based strain gradient crystal plasticity — i. theory. Journal of the Mechanics and Physics of Solids, 53:1188–1203, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  • D. Hestens. New Foundations for Classical Mechanics. Kluwer Academic Publishers, Dordrecht, 1990.

    Google Scholar 

  • C.B. Hirschberger, E. Kuhl, and P. Steinmann. On deformational and configurational mechanics of micromorphic hyperelasticity — theory and computation. Computer Methods in Applied Mechanics and Engineering, 196:4027–4044, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  • E. Hoek and E. T. Brown. Underground excavations in rock. The Institution of Mining and Metallurgy, London, 1982.

    Google Scholar 

  • D. Iesan. On the microstretch piezoelectricity. International Journal of Engineering Science, 44:819–829, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Jänicke, S. Diebels, H.-G. Sehlhorst, and A. Düster. Two-scale modelling of micromorphic continua. a numerical homogenization scheme. Continuum Mechanics and Thermodynamics, 21:297–315, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  • G. Jelenic and M.A. Crisfield. Geometrically exact 3d beam theory: implementation of a strain-invariant finite element for static and dynamics. Computer Methods in Applied Mechanics and Engineering, 171:141–171, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  • D.J. Bammann J.R. Mayeur, D.L. McDowell. Dislocation-based micropolar single crystal plasticity: Comparison of multi-and single criterion theories. Journal of the Mechanics and Physics of Solids, 59:398–422, 2011.

    Article  MathSciNet  Google Scholar 

  • J.K. Knowles and E. Sternberg. On the failure of ellipticity and the emergence of discontinuous deformation gradients in plane finite elastostatics. Journal of Elasticity, 8:329–379, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  • V. Kouznetsova, M.G.D. Geers, and W.A.M. Brekelmans. Multi-scale constitutive modelling of hetergeneous materials with a gradient-enhanced computational homogenization scheme. International Journal for Numerical Methods in Engineering, 54:1235–1260, 2002.

    Article  MATH  Google Scholar 

  • E. Kröner. Allgemeine kontinuumstheorie der versetzungen und eigenspannungen. Archive for Rational Mechanics and Analysis, 4:273–334, 1960.

    Article  MATH  MathSciNet  Google Scholar 

  • E. Kröner. On the physical reality of torque stresses in continuum mechanics. International Journal of Engineering Science, 1:261–278, 1963.

    Article  Google Scholar 

  • R.S. Kumar and D.L. McDowell. Generalized continuum modeling of 2-d periodic cellular solids. International Journal of Solids and Structures, 41:7399–7422, 2004.

    Article  MATH  Google Scholar 

  • D.C.C. Lam, F. Yang, A.C.M Chong, J. Wang, and P. Tong. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 51:1477–1508, 2003.

    Article  MATH  Google Scholar 

  • R. Larsson and S. Diebels. A second-order homogenization procedure for multi-scale analysis based on micropolar kinematics. International Journal for Numerical Methods in Engineering, 69:2485–2512, 2006.

    Article  MathSciNet  Google Scholar 

  • M. Lazar, G. Maugin, and E.C. Aifantis. Dislocations in second strain gradient elasticity. International Journal of Solids and Structures, 43: 1787–1817, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  • E.H. Lee. Elastic-plastic deformation at finite strains. ASME J. Appl. Mech., 36:1–6, 1969.

    Article  MATH  Google Scholar 

  • M.T. Manzaria and R.A. Regueiro. Gradient plasticity modeling of geomaterials in a meshfree environment. part i: Theory and variational formulation. Mechanics Research Communications, 32:536–546, 2005.

    Article  MathSciNet  Google Scholar 

  • F. A. McRobie and J. Lasenby. Simo-vu quoc rods using clifford algebra. International Journal for Numerical Methods in Engineering, 45, 1999.

    Google Scholar 

  • C. McVeigha and W.K. Liu. Linking microstructure and properties through a predictive multiresolution continuum. Computer Methods in Applied Mechanics and Engineering, 197:3268–3290, 2008.

    Article  Google Scholar 

  • R.D. Mindlin. Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis, 16:51–78, 1964.

    Article  MATH  MathSciNet  Google Scholar 

  • H-B. Mühlhaus. Application of cosserat theory in numerical solution of limit load problems. Ingenieur-Archiv, 59:124–137, 1989.

    Article  Google Scholar 

  • H.-B. Mühlhaus and E.C. Aifantis. A variational principle for gradient plasticity. International Journal of Solids and Structures, 28:845–857, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  • C.F. Niordson and B.N. Legarth. Strain gradient effects on cyclic plasticity. Journal of the Mechanics and Physics of Solids, 58:542–557, 2010.

    Article  MathSciNet  Google Scholar 

  • T. Ohashi, M. Kawamukai, and H.M. Zbib. Multiscale modeling of size effects in fcc crystals: Discrete dislocation dynamics and density based gradient crystal plasticity. Philosophical Magazine, 87:1307–1326, 2007.

    Article  Google Scholar 

  • W. Pietraszkiewicz and J. Badur. Finite rotations in the description of continuum deformation. International Journal of Engineering Science, 21:1097–1115, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  • H-B Mhlhaus R. De Borst. Gradient-dependent plasticity: Formulation and algorithmic aspects. International Journal for Numerical Methods in Engineering, 35:521–539, 1992.

    Article  Google Scholar 

  • R.A. Regueiro. Finite strain micromorphic pressure-sensitive plasticity. Journal of Engineering Mechanics, 135:178–191, 2009.

    Article  Google Scholar 

  • C.W. Richards. Effects of size on the yielding of mild steel beams. In Proceedings of the american society for testing and materials, volume 58, pages 955–970, 1958.

    Google Scholar 

  • C. Sansour. A unified concept of elastic-viscoplastic cosserat and micromorphic continua. Journal de Physique IV Proceedings, 8:341–348, 1998a.

    Google Scholar 

  • C. Sansour. A theory of the elastic-viscoplastic cosserat continuum. Archive of Mechanics, 50:577–597, 1998b.

    MATH  Google Scholar 

  • C. Sansour and H. Bednarczyk. The cosserat surface as shell model, theory and finite-element formulation. Computer Methods in Applied Mechanics and Engineering, 120:1–32, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  • C. Sansour and F. G. Kollmann. On theory and numerics of large viscoplastic deformation. Comp. Meth. Appl. Mech. Engrg., 146:351–369, 1997.

    Article  MATH  Google Scholar 

  • C. Sansour and F.G. Kollmann. Large viscoplastic deformations of shells. theory and finite element formulation. Computational Mechanics, 21: 512–525, 1998.

    Article  MATH  Google Scholar 

  • C. Sansour and S. Skatulla. A micromorphic continuum-based formulation for inelastic deformations at finite strains. application to shear band formation. International Journal of Solids and Structures, 47:1546–1554, 2010.

    Article  MATH  Google Scholar 

  • C. Sansour and W. Wagner. A model of finite strain viscoplasticity based on unified constitutive equations. Theoretical and computational considerations with applications to shells. Comp. Meth. Appl. Mech. Engrg., 191:423–450, 2001.

    Article  MATH  Google Scholar 

  • C. Sansour, S. Feih, and W. Wagner. On the performance of enhanced strain finite elements in large strain deformations of elastic shells. International Journal for Computer-Aided Engineering and Software, 20: 875–895, 2003.

    Article  MATH  Google Scholar 

  • J.C. Simo. The (symmetric) hessian for geometrically nonlinear models in solid mechanics: Intrinsic definition and geometric interpretation. Computer Methods in Applied Mechanics and Engineering, 96:189–200, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  • J.C. Simo and L. Vu-Quoc. A three-dimensional finite-strain rod model. part ii: Geometric and computational aspects. Computer Methods in Applied Mechanics and Engineering, 58, 1986.

    Google Scholar 

  • J.C. Simo, N. Tarnow, and M. Doblare. Non-linear dynamics of threedimensional rods: exact energy and momentum conservation algorithms. International Journal for Numerical Methods in Engineering, 38:1431–1473, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  • S. Skatulla and C. Sansour. Essential boundary conditions in meshfree methods via a modified variational principle. applications to shell computations. Computer Assisted Mechanics and Engineering Sciences, 15: 123–142, 2008.

    Google Scholar 

  • L.J. Sluys. Wave Propagation, Localization and Dispersion in Softening Solids. PhD thesis, Delft University of Technology, Netherlands, 1992.

    Google Scholar 

  • G.F. Smith. On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int. J. Engng. Sci., 9:899–916, 1971.

    Article  MATH  Google Scholar 

  • A.J.M Spencer. Theory of invariants in Continuum Physics I, pages 239–353. Academic Press, New York, 1971.

    Google Scholar 

  • P. Steinmann. A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. International Journal of Solids and Structures, 31:1063–1084, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  • L.J. Sudak. Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. Journal of Applied Physics, 94:7281–7287, 2003.

    Article  Google Scholar 

  • D. Tian-min. New principles of work and energy as well as power and energy rate for continuum field theories. Applied Mathematics and Mechanics, 22:1231–1239, 2001.

    Article  Google Scholar 

  • N. Triantafyllidis and E.C. Aifantis. A gradient approach to localization of deformation. International Journal of Elasticity, 16:225–237, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  • V.S. Varadarajan. Lie Groups, Lie Algebras, and their Representation. Springer-Verlag, 1984.

    Google Scholar 

  • I. Vardoulakis, G. Exakaktylos, and S.K. Kourkoulis. Bending of marble with intrinsic length scales: A gradient theory with surface energy and size effects. Le Journal de Physique IV, 8:399–406, 1998.

    Article  Google Scholar 

  • F. Vernerey, W.K. Liu, B. Moran, and G. Olson. Multi-length scale micromorphic process zone model. Computational Mechanics, 44:433–445, 2009.

    Article  MATH  Google Scholar 

  • T. Yalcinkaya, W.A.M. Brekelmans, and M.G.D. Geers. Deformation patterning driven by rate dependent non-convex strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 59:1–17, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  • J.F.C Yang and R.S Lakes. Transient study of couple stress effects in compact bone: Torsion. Journal of Biomechanical Engineering, 103:275–279, 1981.

    Article  Google Scholar 

  • Y. Zhang and R. Larsson. Homogenization of delamination growth in an aca flip-chip joint based on micropolar theory. European Journal of Mechanics A/Solids, 28:433–444, 2009.

    Article  MATH  Google Scholar 

  • Z.H. Zhang, Z. Zhuang, Y. Gao, Z.L. Liu, and J.F. Nie. Cyclic plastic behavior analysis based on the micromorphic mixed hardening plasticity model. Computational Materials Science, 50:1136–1144, 2011.

    Article  Google Scholar 

  • H. To Zhu, H.M. Zbib, and E.C. Aifantis. Strain gradients and continuum modeling of size effect in metal matrix composites. Acta Mechanica, 121: 165–176, 1997.

    Article  MATH  Google Scholar 

  • H.T. Zhu, H.M. Zbib, and K.M. Khraisheh. Flow strength and size effect of an al-si-mg composite model system under multiaxial loadings. Scripta Metall. Mater., 2:1895–1902, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 CISM, Udine

About this chapter

Cite this chapter

Sansour, C., Skatulla, S. (2012). Approaches to Generalized Continua. In: Sansour, C., Skatulla, S. (eds) Generalized Continua and Dislocation Theory. CISM Courses and Lectures, vol 537. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1222-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1222-9_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1221-2

  • Online ISBN: 978-3-7091-1222-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics