Skip to main content

COSBID-M3: A Platform for Multimodal Monitoring, Data Collection, and Research in Neurocritical Care

  • Chapter
  • First Online:

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 115))

Abstract

Neuromonitoring in patients with severe brain trauma and stroke is often limited to intracranial pressure (ICP); advanced neuroscience intensive care units may also monitor brain oxygenation (partial pressure of brain tissue oxygen, PbtO2), electroencephalogram (EEG), cerebral blood flow (CBF), or neurochemistry. For example, cortical spreading depolarizations (CSDs) recorded by electrocorticography (ECoG) are associated with delayed cerebral ischemia after subarachnoid hemorrhage and are an attractive target for novel therapeutic approaches. However, to better understand pathophysiologic relations and realize the potential of multimodal monitoring, a common platform for data collection and integration is needed. We have developed a multimodal system that integrates clinical, research, and imaging data into a single research and development (R&D) platform. Our system is adapted from the widely used BCI2000, a brain-computer interface tool which is written in the C++ language and supports over 20 data acquisition systems. It is optimized for real-time analysis of multimodal data using advanced time and frequency domain analyses and is extensible for research development using a combination of C++, MATLAB, and Python languages. Continuous streams of raw and processed data, including BP (blood pressure), ICP, PtiO2, CBF, ECoG, EEG, and patient video are stored in an open binary data format. Selected events identified in raw (e.g., ICP) or processed (e.g., CSD) measures are displayed graphically, can trigger alarms, or can be sent to researchers or clinicians via text message. For instance, algorithms for automated detection of CSD have been incorporated, and processed ECoG signals are projected onto three-dimensional (3D) brain models based on patient magnetic resonance imaging (MRI) and computed tomographic (CT) scans, allowing real-time correlation of pathoanatomy and cortical function. This platform will provide clinicians and researchers with an advanced tool to investigate pathophysiologic relationships and novel measures of cerebral status, as well as implement treatment algorithms based on such multimodal measures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Washington CW, Zipfel GJ (2011) Detection and monitoring of vasospasm and delayed cerebral ischemia: a review and assessment of the literature. Neurocrit Care 15(2):312–317

    Article  PubMed  Google Scholar 

  2. Macdonald RL (2009) Subarachnoid hemorrhage and microdialysis. J Neurosurg 111(5):907–908

    Article  PubMed  Google Scholar 

  3. Vespa PM et al (1997) Early detection of vasospasm after acute subarachnoid hemorrhage using continuous EEG ICU monitoring. Electroencephalogr Clin Neurophysiol 103(6):607–615

    Article  PubMed  CAS  Google Scholar 

  4. Labar DR et al (1991) Quantitative EEG monitoring for patients with subarachnoid hemorrhage. Electroencephalogr Clin Neurophysiol 78(5):325–332

    Article  PubMed  CAS  Google Scholar 

  5. Vajkoczy P et al (2003) Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage. J Neurosurg 98(6):1227–1234

    Article  PubMed  Google Scholar 

  6. Zweifel C et al (2010) Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage. Stroke 41(9):1963–1968

    Article  PubMed  Google Scholar 

  7. Pluta RM et al (2009) Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res 31(2):151–158

    Article  PubMed  CAS  Google Scholar 

  8. Hansen-Schwartz J et al (2007) Cerebral vasospasm: looking beyond vasoconstriction. Trends Pharmacol Sci 28(6):252–256

    Article  PubMed  CAS  Google Scholar 

  9. Lauritzen M et al (2011) Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J Cereb Blood Flow Metab 31(1):17–35

    Article  PubMed  Google Scholar 

  10. Dreier JP (2011) The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med 17(4):439–447

    Article  PubMed  CAS  Google Scholar 

  11. Dreier JP et al (2006) Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. Brain 129(Pt 12):3224–3237

    Article  PubMed  Google Scholar 

  12. Dreier JP et al (2009) Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain 132(Pt 7):1866–1881

    Article  PubMed  Google Scholar 

  13. Iadecola C (2009) Bleeding in the brain: killer waves of depolarization in subarachnoid bleed. Nat Med 15(10):1131–1132

    Article  PubMed  CAS  Google Scholar 

  14. Hartings JA et al (2011) Spreading depolarizations have prolonged direct current shifts and are associated with poor outcome in brain trauma. Brain 134:1529–1540

    Article  PubMed  Google Scholar 

  15. Dohmen C et al (2008) Spreading depolarizations occur in human ischemic stroke with high incidence. Ann Neurol 63(6):720–728

    Article  PubMed  Google Scholar 

  16. Hartings JA et al (2009) Spreading depolarizations and late secondary insults after traumatic brain injury. J Neurotrauma 26(11): 1857–1866

    Article  PubMed  Google Scholar 

  17. Nakamura H et al (2010) Spreading depolarizations cycle around and enlarge focal ischaemic brain lesions. Brain 133(Pt 7):1994–2006

    Article  PubMed  Google Scholar 

  18. Hopwood SE et al (2005) Transient changes in cortical glucose and lactate levels associated with peri-infarct depolarisations, studied with rapid-sampling microdialysis. J Cereb Blood Flow Metab 25(3):391–401

    Article  PubMed  CAS  Google Scholar 

  19. Krajewski KL et al (2011) Cerebral microdialysis in acutely brain-injured patients with spreading depolarizations. Acta Neurochir Suppl 110(Pt 1):125–130

    Article  PubMed  CAS  Google Scholar 

  20. Bosche B et al (2010) Recurrent spreading depolarizations after subarachnoid hemorrhage decreases oxygen availability in human cerebral cortex. Ann Neurol 67(5):607–617

    Article  PubMed  Google Scholar 

  21. Schalk G et al (2004) BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng 51(6):1034–1043

    Article  PubMed  Google Scholar 

  22. Brunner P et al (2009) A practical procedure for real-time functional mapping of eloquent cortex using electrocorticographic signals in humans. Epilepsy Behav 15(3):278–286

    Article  PubMed  Google Scholar 

  23. Felton EA et al (2009) Evaluation of a modified Fitts law brain-computer interface target acquisition task in Able and motor disabled individuals. J Neural Eng 6(5):056002

    Article  PubMed  CAS  Google Scholar 

  24. Feuerstein D et al (2010) Dynamic metabolic response to multiple spreading depolarizations in patients with acute brain injury: an online microdialysis study. J Cereb Blood Flow Metab 30(7):1343

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Supported by grants from the Mayfield Education and Research Foundation and the US Army CDMRP PH/TBI research program (W81XWH-08-2-0016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Adam Wilson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Wilson, J.A., Shutter, L.A., Hartings, J.A. (2013). COSBID-M3: A Platform for Multimodal Monitoring, Data Collection, and Research in Neurocritical Care. In: Zuccarello, M., Clark, J., Pyne-Geithman, G., Andaluz, N., Hartings, J., Adeoye, O. (eds) Cerebral Vasospasm: Neurovascular Events After Subarachnoid Hemorrhage. Acta Neurochirurgica Supplement, vol 115. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1192-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1192-5_15

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1191-8

  • Online ISBN: 978-3-7091-1192-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics