Skip to main content

Vibrations of Beams in the Elasto-Plastic and Geometrically Nonlinear Regime

  • Chapter
Exploiting Nonlinear Behavior in Structural Dynamics

Part of the book series: CISM Courses and Lectures ((CISM,volume 536))

Abstract

This chapter presents models for beams vibrating with moderately large displacements and with elasto-plasticity. The beams are initially straight, homogeneous and isotropic, and oscillate always in one plane. A method to solve the equations of motion in the time domain, with computation of plastic strains in a mixed hardening situation, is described. Forced oscillations under harmonic excitations are analysed using this method. A frequency domain procedure to analyse free vibrations with existing plastic strains is also introduced. Free vibration oscillations are then analysed, with particular attention to the combined influence of large displacements, i.e., geometrical nonlinearity, and plastic strains on the shapes assumed during the period of vibration and on the natural frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • M. Amabili. Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, 2008.

    Google Scholar 

  • R. Arquier, S. Bellizzi, R. Bouc, and B. Cochelin. Two methods for the computation of nonlinear modes of vibrating systems at large amplitudes. Computers and Structures, 24-25:1565–1576, 2006.

    Article  MathSciNet  Google Scholar 

  • S. Atluri. Nonlinear vibrations of a hinged beam including nonlinear effects. Transactions of the ASME, Journal of Applied Mechanics, 40:121–126, 1973.

    Article  MATH  Google Scholar 

  • K. J. Bathe. Finite Element Procedures. Prentice Hall, 1996.

    Google Scholar 

  • R. Benamar, M. M. K. Bennouna, and R. G. White. The effects of large vibration amplitudes on the mode shapes and natural frequencies of thin elastic structures. part i: Simply supported and clamped-clamped beams. Journal of Sound and Vibration, 149:179–195, 1991.

    Article  Google Scholar 

  • J. A. Bennet and J. G. Eisley. A multiple-degree-of freedom approach to nonlinear beam vibrations. AIAA Journal, 8:734–739, 1970.

    Article  Google Scholar 

  • M. M. K. Bennouna. Nonlinear Dynamic Behaviour of a Clamped-clamped Beam with Consideration of Fatigue Life, Ph.D. Thesis. University of Southampton, 1982.

    Google Scholar 

  • M. M. K. Bennouna and R. G. White. The effects of large vibration amplitudes on the fundamental mode shape of a clamped-clamped uniform beam. Journal of Sound and Vibration, 96:309–331, 1984.

    Article  Google Scholar 

  • G. R. Bhashyam and G. Prathap. Galerkin finite element method for nonlinear vibrations. Journal of Sound and Vibration, 72:191–203, 1980.

    Article  MATH  Google Scholar 

  • V. V. Bolotin. The Dynamic Stability of Elastic Systems. Holden Day, 1964.

    Google Scholar 

  • T. D. Burton and M. N. Hamdan. On the calculation of non-linear normal modes in continuous systems. Journal of Sound and Vibration, 197:117–130, 1996.

    Article  Google Scholar 

  • H. R. Busby and V. I. Weingarten. Nonlinear response of a beam to periodic loading. International Journal of Non-linear Mechanics, 7:289–303, 1972.

    Article  MATH  Google Scholar 

  • Y. K. Cheung and S. L. Lau. Incremental time-space finite strip method for non-linear structural vibrations. Earthquake Engineering and Structural Dynamics, 10:239–253, 1982.

    Article  Google Scholar 

  • C. Y. Chia. Nonlinear Analysis of Plates. McGraw-Hill, 1980.

    Google Scholar 

  • B. Cochelin and C. Vergez. A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. Journal of Sound and Vibration, 324:243–262, 2009.

    Article  Google Scholar 

  • P. J. Davis and I. Polonsky. Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, Series 55, 1972.

    Google Scholar 

  • G. E. Dieter. Mechanical Metallurgy. McGraw-Hill, 1986.

    Google Scholar 

  • D. J. Ewins. Modal Testing: Theory, Pratice and Application. Research Studies Press, 2000.

    Google Scholar 

  • Y. C. Fung and P. Tong. Classical and Computational Solid Mechanics. World Scientific, 2001.

    Google Scholar 

  • J. Gerstmayr and H. Irschik. Vibrations of the elasto-plastic pendulum. International Journal of Non-Linear Mechanics, 38:111–122, 2003.

    Article  MATH  Google Scholar 

  • J. Gerstmayr, H. J. Holl, and H. Irschik. Development of plasticity and damage in vibrating structural elements performing guided rigid-body motions. Archive of Applied Mechanics, 71:135–145, 2001.

    Article  MATH  Google Scholar 

  • R. P. S. Han and J. Lu. A space-time finite element method for elasto-plastic shock dynamics. Journal of Sound and Vibration, 222:65–84, 1999.

    Article  Google Scholar 

  • W. Han. The analysis of isotropic and laminated rectangular plates including geometrical non-linearity using the p-version finite element method, Ph.D. Thesis. University of Southampton, 1993.

    Google Scholar 

  • C. Hayashi. Nonlinear Oscillations in Physical Systems. McGraw-Hill, 1964.

    Google Scholar 

  • J. R. Hutchinson. Shear coefficients for timoshenko beam theory. Transactions of the ASME, Journal of Applied Mechanics, 68:87–92, 2001.

    Article  MATH  Google Scholar 

  • M. El Kadiri, R. Benamar, and R. G. White. Improvement of the semianalytical method, for determining the geometrically non-linear response of thin straight structures. part 1: Application to clamped-clamped and simply supported-clamped beams. Journal of Sound and Vibration, 249: 263–305, 2002.

    Article  Google Scholar 

  • T. Kaneko. On timoshenko’s correction for shear in vibrating beams. Journal of Physics D, 8:1927–1936, 1975.

    Article  Google Scholar 

  • S. G. Kelly. Mechanical Vibrations. McGraw-Hill, 1993.

    Google Scholar 

  • M. Kojić and K.-J. Bathe. Inelastic Analysis of Solids and Structures. Springer-Verlag, 2005.

    Google Scholar 

  • J.-Y. Lee, P. S. Symonds, and G. Borino. Chaotic responses of a two-degreeof freedom elastic-plastic beam model to short pulse loading. Transactions of the ASME, Journal of Applied Mechanics, 59:711–721, 1992.

    Article  Google Scholar 

  • U. Lepik. Elastic-plastic vibrations of a buckled beam. International Journal of Non-Linear Mechanics, 30:129–139, 1995.

    Article  MATH  Google Scholar 

  • A. Y. T. Leung and T. C. Fung. Non-linear steady state vibration of frames by finite element method. International Journal for Numerical Methods in Engineering, 28:1599–1618, 1989.

    Article  MATH  Google Scholar 

  • A. Y. T. Leung and S. G. Mao. A symplectic galerkin method for nonlinear vibration of beams and plates. Journal of Sound and Vibration, 183:475–491, 1995.

    Article  MATH  Google Scholar 

  • R. Lewandowski. Application of the ritz method to the analysis of nonlinear free vibrations of beams. Journal of Sound and Vibration, 114: 91–101, 1987.

    Article  MATH  Google Scholar 

  • R. Lewandowski. Non-linear, steady-state analysis of multispan beams by the finite element method. Computers and Structures, 39:83–93, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  • R. Lewandowski. Non-linear free vibrations of beams by the finite element and continuation methods. Journal of Sound and Vibration, 170:577–593, 1994a.

    Article  MATH  Google Scholar 

  • R. Lewandowski. Solutions with bifurcation points for free vibration of beams: an analytical approach. Journal of Sound and Vibration, 177: 239–249, 1994b.

    Article  MATH  Google Scholar 

  • R. Lewandowski. Computational formulation for periodic vibration of geometrically nonlinear structures-part 1: Theoretical background. International Journal Solids Structures, 34:1925–1947, 1997a.

    Article  MATH  Google Scholar 

  • R. Lewandowski. Computational formulation for periodic vibration of geometrically nonlinear structures-part 2: Numerical strategy and examples. International Journal Solids Structures, 34:1949–1964, 1997b.

    Article  Google Scholar 

  • R. Lewandowski. Free vibration of structures with cubic non-linearity-remarks on amplitude equation and rayleigh quotient. Computer Methods in Applied Mechanics and Engineering, 192:1681–1709, 2003.

    Article  MATH  Google Scholar 

  • Y. M. Liu, G. W. Ma, and Q. M. Li. Chaotic and asymmetrical beam response to impulsive load. International Journal of Solids and Structures, 41:765–784, 2004.

    Article  MATH  Google Scholar 

  • A. J. Ma, S. H. Chen, and D. T. Song. A new method of nonlinear analysis for large deflection forced vibration of beams. Finite Elements in Analysis and Design, 20:39–46, 1995.

    Article  MATH  Google Scholar 

  • G. W. Ma, Y. M. Liu, J. Zhao, and Q. M. Li. Dynamic asymmetrical instability of elastic-plastic beams. International Journal of Mechanical Sciences, 47:43–62, 2005.

    Article  MATH  Google Scholar 

  • E. Manoach and D. Karagiozova. Dynamic response of thick elastic-plastic beams. International Journal of Mechanical Sciences, 35:909–919, 1993.

    Article  MATH  Google Scholar 

  • M. I. McEwan, J. R. Wright, J. E. Cooper, and A. Y. T. Leung. A combined modal/finite element analysis technique for the dynamic response of a non-linear beam to harmonic excitation. Journal of Sound and Vibration, 243:601–624, 2001.

    Article  Google Scholar 

  • C. Mei. Finite element displacement method for large amplitude free flexural vibrations of beams and plates. Computers and Structures, 3:163–174, 1973.

    Article  Google Scholar 

  • C. Mei. Nonlinear vibration of beams by matrix displacement method. AIAA Journal, 10:355–357, 1976.

    Article  Google Scholar 

  • C. Mei and K. Decha-Umphai. A finite element method for non-linear forced vibrations of beams. Journal of Sound and Vibration, 102:369–380, 1985.

    Article  Google Scholar 

  • L. Meirovitch and H. Baruh. On the inclusion principle for the hierarchical finite element method. International Journal for Numerical Methods in Engineering, 19:281–291, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  • K. D. Murphy, L. N. Virgin, and S. A. Rizzi. Characterizing the dynamic response of a thermally loaded, acoustically excited plate. Journal of Sound and Vibration, 196:635–658, 1996.

    Article  Google Scholar 

  • A. H. Nayfeh and B. Balachandran. Modal interactions in dynamical and structural systems. Applied Mechanics Review, 42:S175–S201, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  • A. H. Nayfeh and D. T. Mook. Nonlinear Oscillations. John Wiley and Sons, 1995.

    Google Scholar 

  • M. Petyt. Introduction to Finite Element Vibration Analysis. Cambridge University Press, 1990.

    Google Scholar 

  • B. S. Prathap and T. K. Varadan. The large amplitude vibrations of hinged beams. Computers and Structures, 9:219–222, 1978.

    Article  MATH  Google Scholar 

  • M. I. Qaisi. Application of the harmonic balance principle to the nonlinear free vibration of beams. Applied Acoustics, 40:141–151, 1993.

    Article  Google Scholar 

  • P. Ribeiro. Geometrical Nonlinear Vibration of Beams and Plates by the Hierarchical Finite Element Method, Ph.D. Thesis. University of Southampton, 1998.

    Google Scholar 

  • P. Ribeiro. Hierarchical finite element analyses of geometrically non-linear vibration of beams and plane frames. Journal of Sound and Vibration, 246:225–244, 2001.

    Article  Google Scholar 

  • P. Ribeiro. A p-version, first order shear deformation, finite element for geometrically non-linear vibration of curved beams. International Journal for Numerical Methods in Engineering, 61:2696–2715, 2004a.

    Article  MATH  Google Scholar 

  • P. Ribeiro. Non-linear forced vibrations of thin/thick beams and plates by the finite element and shooting methods. Computers and Structures, 82: 1413–1423, 2004b.

    Article  Google Scholar 

  • P. Ribeiro. Free periodic vibrations of beams with large displacements and initial plastic strains. International Journal of Mechanical Sciences, 52: 1407–1418, 2010.

    Article  Google Scholar 

  • P. Ribeiro. Stability of multi-degree-of-freedom Duffing oscillators. Engineering and Computational Mechanics, Proceedings of the Institution of Civil Engineers, 2:87–97, 2009.

    MathSciNet  Google Scholar 

  • P. Ribeiro and R. Carneiro. Experimental detection of modal interaction in the non-linear analysis of a hinged-hinged beam. Journal of Sound and Vibration, 277:943–954, 2004.

    Article  Google Scholar 

  • P. Ribeiro and M. Petyt. Non-linear vibration of beams with internal resonance by the hierarchical finite element method. Journal of Sound and Vibration, 224:591–624, 1999.

    Article  Google Scholar 

  • P. Ribeiro and G. H. M. van der Heijden. Elasto-plastic and geometrically nonlinear vibrations of beams by the p-version finite element method. Journal of Sound and Vibration, 325:321–337, 2009.

    Article  Google Scholar 

  • P. Ribeiro, B. Cochelin, and S. Bellizzi. Non-linear vibrations of deep cylindrical shells by the p-version finite element method. Shock and Vibration, 17:21–37, 2010.

    Google Scholar 

  • R. M. Rosenberg. On non-linear vibrations of systems with many degrees of freedom. Advances Applied Mechanics, 9:155–242, 1966.

    Article  Google Scholar 

  • B. S. Sarma and T. K. Varadan. Ritz finite element approach to non-linear vibrations of beams. International Journal for Numerical Methods in Engineering, 20:353–367, 1984a.

    Article  MATH  Google Scholar 

  • B. S. Sarma and T. K. Varadan. Lagrange-type formulation for finite element analysis of non-linear beam vibrations. Journal of Sound and Vibration, 86:61–70, 1983.

    Article  Google Scholar 

  • B. S. Sarma and T. K. Varadan. Ritz finite element approach to non-linear vibrations of beams. International Journal for Numerical Methods in Engineering, 20:353–367, 1984b.

    Article  MATH  Google Scholar 

  • M. Sathyamoorthy. Nonlinear vibration analysis of plates: a review and survey of current developments. Applied Mechanics Review, 40:1553–1561, 1987.

    Article  Google Scholar 

  • S. W. Shaw and C. Pierre. Normal modes for non-linear vibratory systems. Journal of Sound and Vibration, 164:85–121, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  • S. W. Shaw and C. Pierre. Normal modes of vibration for non-linear continuous systems. Journal of Sound and Vibration, 169:319–347, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  • Y. Shi and C. Mei. A finite element time domain modal formulation for large amplitude free vibration of beams and plates. Journal of Sound and Vibration, 193:453–464, 1996.

    Article  MATH  Google Scholar 

  • J. C. Simo and T. J. R. Hughes. Computational Inelasticity. Springer-Verlag, 1998.

    Google Scholar 

  • P. W. Smith, C. I. Malme, and C. M. Gogos. Nonlinear response of a simple clamped panel. The Journal of the Acoustical Society of America, 33: 1476–1482, 1961.

    Article  Google Scholar 

  • P. S. Symonds and T. X. Yu. Counter-intuitive behavior in a problem of elastic-plastic beam dynamics. Transactions of the ASME, Journal of Applied Mechanics, 52:517–522, 1985.

    Article  Google Scholar 

  • B. Szabó and I. Babuska. Finite Element Analysis. John Wiley and Sons, 1991.

    Google Scholar 

  • W. Szemplinska-Stupnicka. The Behaviour of Non-linear Vibrating Systems. Kluwer Academic Publishers, 1990.

    Google Scholar 

  • W. Szemplinska-Stupnicka. “non-linear normal modes” and the generalized ritz method in the problems of vibrations of non-linear elastic continuous systems. International Journal of Non-Linear Mechanics, 18:149–165, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  • K. Takahashi. A method of stability analysis for non-linear vibration of beams. Journal of Sound and Vibration, 67:43–54, 1979.

    Article  MATH  Google Scholar 

  • C. E. Teh. Dynamic Behaviour and Acoustic Fatigue of Isotropic and Anisotropic Panels Under Combined Acoustic Excitation and Static Inplane Compression, Ph.D. Thesis. University of Southampton, 1982.

    Google Scholar 

  • J. J. Thomsen. Vibrations and Stability. Springer, 2003.

    Google Scholar 

  • S. P. Timoshenko. On the transverse vibrations of bars of uniform cross section. Philosophy Magazine, 43:125–131, 1922.

    Article  Google Scholar 

  • C. Touzé, O. Thomas, and A. Huberdeau. Asymptotic non-linear normal modes for large-amplitude vibrations of continuous structures. Computers and Structures, 82:31–32, 2004.

    Article  Google Scholar 

  • W. Y. Tseng and J. Dugundji. Nonlinear vibrations of a beam under harmonic excitation. Transactions of the ASME, Journal of Applied Mechanics, 37:292–297, 1970.

    Article  MATH  Google Scholar 

  • R. G. White. A comparison of some statistical properties of the responses of aluminium alloy and cfrp plates to acoustic excitation. Composites, 9: 251–258, 1978.

    Article  Google Scholar 

  • S. Woinowski-Krieger. The effect of an axial force on the vibration of hinged bars. Journal of Applied Mechanics, 17:35–36, 1950.

    Google Scholar 

  • H. Wolfe. An Experimental Investigation of Nonlinear Behaviour of Beams and Plates Excited to High Levels of Dynamic Response, Ph.D. Thesis. University of Southampton, 1995.

    Google Scholar 

  • J.-X. Xu and N. Hasebe. The problem of an elastic-plastic beam dynamics and an incomplete co-dimension two bifurcation. International Journal of Non-Linear Mechanics, 32:127–143, 1997.

    Article  MATH  Google Scholar 

  • K. Yagasaki. Bifurcations and chaos in a quasi-periodically forced beam: theory, simulation and experiment. Journal of Sound and Vibration, 183: 1–31, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  • T. Yamamoto, K. Yasuda, and K. Aoki. Subharmonic oscillations of a slender beam. Bulletin of the JSME, 24:1011–1020, 1981.

    Article  Google Scholar 

  • T. Yamamoto, K. Yasuda, and K. Aoki. Summed and differential harmonic oscillations in a slender beam. Bulletin of the JSME, 24:1214–1222, 1982a.

    Article  Google Scholar 

  • T. Yamamoto, K. Yasuda, and K. Aoki. Super summed and differential harmonic oscillations in a slender beam. Bulletin of the JSME, 25:959–968, 1982b.

    Article  Google Scholar 

  • L.D. Zavodney and A.H. Nayfeh. The non-linear response of a slender beam carrying a lumped mass to a principal parametric excitation: Theory and experiments. International Journal of Non-Linear Mechanics, 24: 105–125, 1989.

    Article  MATH  Google Scholar 

  • B. Zhu and A. Y. T. Leung. Linear and nonlinear vibration of non-uniform beams on two-parameter foundations using p-elements. Computers and Geotechnics, 36:743–750, 2009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 CISM, Udine

About this chapter

Cite this chapter

Ribeiro, P. (2012). Vibrations of Beams in the Elasto-Plastic and Geometrically Nonlinear Regime. In: Wagg, D.J., Virgin, L. (eds) Exploiting Nonlinear Behavior in Structural Dynamics. CISM Courses and Lectures, vol 536. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1187-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1187-1_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1186-4

  • Online ISBN: 978-3-7091-1187-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics