Skip to main content

Prion diseases and manganism

  • Chapter
  • First Online:
Book cover Metal Ions in Neurological Systems
  • 893 Accesses

Abstract

Recent studies on mice experimentally infected with scrapie suggested that large increase in the levels of manganese ion occurs in blood and brain prior to the onset of symptoms of the prion disease, and the observed elevated manganese ion in several central nervous systems implies that the prion diseases should be considered to be one of the manganism. We have observed that oxidation of Mn(III) ion in several manganese chelates occurs in the presence of apo-transferrin, giving a di-μ-oxo bridged Mn(III/IV) species (hereafter we will call these Mn(III) and Mn(IV) ions to be labile plasma manganese ions), and at the same time facile uptake of manganese ions by apo-transferrin proceeds. This clearly shows that most manganese ions can be transported to the brain in a facile manner by transferrin under certain conditions. There are many iron-containing enzymes in the brain, and substitution of iron ion in these enzymes with other metal ions such as manganese ion results in complete or partial loss of enzymatic activity, and this is because the reactivity of the iron ion towards oxygen molecule is quite different from that of the manganese ions. Thus, the excess accumulation of the manganese ion in the brain should lead to (a) abnormality in iron metabolism, i.e., the increase of the labile plasma iron (or non-transferrin-bound iron, NTBI), which is in fact observed for the certain regions of the brain of scrapie strain infected mice; these iron ions are not transferred to transferrin, giving to the iron-deficiency state in the brain which leads to the defect of neurotransmitters such as dopamine and serotonin and (b) the abnormalities of the brain functions due to the toxicity of the labile plasma iron ions, which leads to neural cell death. Based on the above facts, and that (1) the labile plasma iron can in a facile manner produce the hydrogen peroxide and (2) the prion diseases can be elucidated by the “gain-of-function” of the prion proteins as copper(II)-containing enzyme in the presence of excess hydrogen peroxide, we have concluded that the prion diseases including both the sporadic and infected types should be elucidated by the combined toxicities due to the both labile plasma manganese and iron ions. Very recently we have succeeded in obtaining the chelate which captures both the labile plasma iron and manganese ions effectively and removes these ions without toxicity from the solution in vitro. Thus, we can hope that our new chelates should make notable contribution to the prevention and therapeutics for the prion disease, Parkinson’s disease, amyotrophic lateral sclerosis (ALS), Alzheimer’s disease, schizophrenia, and dementia, which are now in progress in Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chani AC, Ferguson NM, Donnell CA, Anderson RM (2000) Nature 406:583

    Article  Google Scholar 

  2. Beale AJ (2001) J R Soc Med 94:207

    PubMed  CAS  Google Scholar 

  3. Houston F, Foster JD, Chong A, Hunter N, Bostock CJ (2000) Lancet 356:955

    Article  Google Scholar 

  4. Cohen FE, Prusiner SB (1998) Annu Rev Biochem 67:793

    Article  PubMed  CAS  Google Scholar 

  5. Collinge J (2001) Annu Rev Neurosci 24:519

    Article  PubMed  CAS  Google Scholar 

  6. Prusiner SB (1996) Trends Biochem Sci 21:482

    Article  PubMed  CAS  Google Scholar 

  7. Caughey B (2001) Trends Biochem Sci 25:235

    Article  Google Scholar 

  8. Brown D (2001) Trends Neurosci 24:85

    Article  PubMed  CAS  Google Scholar 

  9. Wong BS, Chen SG, Colucci M, Xie Z, Pan T, Liu T, Li R, Gambetti P, Sy MS, Brown DR (2001) J Neurochem 78:1400

    Article  PubMed  CAS  Google Scholar 

  10. Dobson AW, Erikson KM, Aschner M (2004) Ann N Y Acad Sci 1012:115

    Article  PubMed  CAS  Google Scholar 

  11. Kaiser J (2003) Science 300:926

    Article  PubMed  CAS  Google Scholar 

  12. Hesketh S, Sassoon J, Knight R, Hopkins J, Brown DR (2007) J Anim Sci 85:1596

    Article  PubMed  CAS  Google Scholar 

  13. Fernaeus S, Reis K, Bedecs K, Land T (2005) Neurosci Lett 389:133

    Article  PubMed  CAS  Google Scholar 

  14. Fernaeus S, Halldin J, Bedecs K, Land T (2005) Mol Brain Res 133:266

    Article  PubMed  CAS  Google Scholar 

  15. Nishida Y (2004) Med Hypothesis Res 1:227–245

    Google Scholar 

  16. Nishida Y (2003) Z Naturforsch 58c:752

    Google Scholar 

  17. Nishida Y (2011) Monatsh Chem 142:375

    Article  CAS  Google Scholar 

  18. Shiraki H, Yase Y (1991) In: Vinken PI, Bruyn GW, Klawans HL (eds) Handbook of clinical neurology, vol 15, pp 273–300

    Google Scholar 

  19. Gerlach M, Schachar DB, Riederer P, Youdim MBH (1994) J Neurochem 63:793

    Article  PubMed  CAS  Google Scholar 

  20. Youdim MBH, Riederer P (1997) Sci Am 1997:52

    Article  Google Scholar 

  21. Heilig EA, Thonpson KJ, Molina RM, Ivanov AR, Brain JD, Resnick MW (2006) Am J Physiol Lung Cell Mol Physiol 290:L1247

    Article  PubMed  CAS  Google Scholar 

  22. Abe K, Chiba Y, Nishida Y (2008) Z Naturforsch 63c:154

    Google Scholar 

  23. Nishida Y, Ito Y, Satoh T (2007) Z Naturforsch 62c:608

    Google Scholar 

  24. Sutoh Y, Nishino S, Nishida Y (2005) Chem Lett 34:140

    Article  CAS  Google Scholar 

  25. Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Clarendon, London

    Google Scholar 

  26. Okuno T, Nishida Y (1996) Polyhedron 15:1509–1515

    Article  CAS  Google Scholar 

  27. Que L Jr, Ho RYN (1996) Chem Rev 96:2607

    Article  PubMed  CAS  Google Scholar 

  28. Sutoh Y, Nishida Y (2005) Synth React Inorg Metal-org Nano-metal Chem 35:575

    Article  CAS  Google Scholar 

  29. Harrison PM, Arosio P (1996) Biochem Biophys Acta 1275:161

    Article  PubMed  Google Scholar 

  30. Nishida Y (2009) TCIMAIL 141:2. http://www.tciamerica.com/tcimail/backnumber/article/141drE.pdf

  31. Nishida Y, Takeuchi M (1987) Z Naturforsch 42b:52

    Google Scholar 

  32. Nishida Y, Nasu M, Akamatu T (1992) J Chem Soc Chem Commun 1992:94

    Google Scholar 

  33. Yamanaka K, Cleveland DW (2005) Neurology 65:1859

    Article  PubMed  Google Scholar 

  34. Alessandra G, Hider RC (2005) Br J Pharm 146:1041

    Google Scholar 

  35. Nishida Y (2007) TCIMail 135:2. http://www.tciamerica.com/tcimail/backnumber/135drE.pdf

  36. Rakhit R, Crow JP, Lepock JR, Kondejewski LH, Cashman NR, Chakrabartty A (2004) J Biol Chem 279:15499

    Article  PubMed  CAS  Google Scholar 

  37. Abe K, Nishida Y (2008) Z Naturforsch 63c:151

    Google Scholar 

  38. Chiba Y, Sutoh Y, Nishida Y (2006) Z Naturforsch 61c:273

    Google Scholar 

  39. Sato T, Nakanishi T, Yamamoto Y, Andersen PM, Ogawa Y, Fukada K, Zhou Z, Aoike F, Sugai F, Nagano S, Hirata S, Ogawa M, Nakano R, Ohi T, Kato T, Nakagawa M, Hamasaki T, Shimizu A, Sakoda S (2005) Neurology 65:1954

    Article  PubMed  CAS  Google Scholar 

  40. Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV (1999) Science 284:805

    Article  PubMed  CAS  Google Scholar 

  41. MaMahon EHM, Mange A, Nishida N, Creminon C, Casanova D, Lehmann S (2001) J Biol Chem 276:2286

    Article  Google Scholar 

  42. Requena JR, Groth D, Legname G, Sradtman ER, Prusiner SB, Revine RL (2001) Proc Natl Acad Sci USA 98:7170

    Article  PubMed  CAS  Google Scholar 

  43. Watt NT, Taylor DR, Gillott A, Thomas DA, Perera WS, Hooper NM (2005) J Biol Chem 280:35914

    Article  PubMed  CAS  Google Scholar 

  44. Tabler BJ, Turnbull S, Fullwood NJ, German M, Allsop D (2005) Biochem Soc Trans 33:548

    Article  Google Scholar 

  45. Tabler BJ, Agnaf OMEA, Turnbull S, German MJ, Paleologou KE, Hayashi Y, Kooper LJ, Fullwood NJ, Allsop D (2005) J Biol Chem 280:35789

    Article  Google Scholar 

  46. Watt NT, Hopper NM (2005) Biochem Soc Trans 33:1123

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzo Nishida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Nishida, Y. (2012). Prion diseases and manganism. In: Linert, W., Kozlowski, H. (eds) Metal Ions in Neurological Systems. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1001-0_6

Download citation

Publish with us

Policies and ethics