Skip to main content

The Role of Mitochondria in the Activation/Maintenance of SOCE

Local Regulation of Plasma Membrane Channels by Mitochondria

  • Chapter
  • First Online:
  • 679 Accesses

Abstract

An important function of mitochondria is to shape cytosolic Ca2+ signals by taking up and subsequently releasing Ca2+ ions. Ca2+ sequestration by mitochondria decreases the local Ca2+ concentration in the vicinity of Ca2+ entry channels, a process thought to underlie the modulation of store-operated Ca2+ entry (SOCE) by mitochondria. Early studies showed that Ca2+ elevations in the vicinity of SOCE channels exert a negative feedback on the current amplitude, causing a slow Ca2+ -dependent inactivation that is prevented by respiring mitochondria. Local buffering of Ca2+ by mitochondria, however, implies a close proximity between mitochondria and SOCE channels that appears at odds with recent morphological and functional evidence showing that SOCE activation relies on the close apposition of thin cortical ER sheets and the docking of STIM1 ER proteins to plasma membrane Orai or TRP channels. In this chapter, we review the recently identified mitochondrial channels and exchangers that are thought to mediate the fluxes of Ca2+ across mitochondria, and re-evaluate the role of mitochondria as SOCE modulators in view of our recent knowledge about the machinery leading to SOCE.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arnaudeau S, Kelley WL, Walsh JV Jr, Demaurex N (2001) Mitochondria recycle Ca(2+) to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J Biol Chem 276(31):29430–29439

    Article  PubMed  CAS  Google Scholar 

  • Babcock DF, Herrington J, Goodwin PC, Park YB, Hille B (1997) Mitochondrial participation in the intracellular Ca2+ network. J Cell Biol 136(4):833–844

    Article  PubMed  CAS  Google Scholar 

  • Bakowski D, Parekh AB (2007) Regulation of store-operated calcium channels by the intermediary metabolite pyruvic acid. Curr Biol 17(12):1076–1081

    Article  PubMed  CAS  Google Scholar 

  • Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79(4):1127–1155

    PubMed  CAS  Google Scholar 

  • Bernardi P, Azzone GF (1983) Regulation of Ca2+ efflux in rat liver mitochondria. Role of membrane potential. Eur J Biochem 134(2):377–383

    Article  PubMed  CAS  Google Scholar 

  • Brookes PS, Parker N, Buckingham JA, Vidal-Puig A, Halestrap AP, Gunter TE, Nicholls DG, Bernardi P, Lemasters JJ, Brand MD (2008) UCPs--unlikely calcium porters. Nat Cell Biol 10(11):1235–1237, Author reply 1237–1240

    Article  PubMed  CAS  Google Scholar 

  • Campello S, Scorrano L (2010) Mitochondrial shape changes: orchestrating cell pathophysiology. EMBO Rep 11(9):678–684

    Article  PubMed  CAS  Google Scholar 

  • Collins TJ, Lipp P, Berridge MJ, Li W, Bootman MD (2000) Inositol 1,4,5-trisphosphate-induced Ca2+ release is inhibited by mitochondrial depolarization. Biochem J 347(Pt 2):593–600

    Article  PubMed  CAS  Google Scholar 

  • Cox DA, Conforti L, Sperelakis N, Matlib MA (1993) Selectivity of inhibition of Na(+)-Ca2+ exchange of heart mitochondria by benzothiazepine CGP-37157. J Cardiovasc Pharmacol 21(4):595–599

    Article  PubMed  CAS  Google Scholar 

  • Csordas G, Renken C, Varnai P, Walter L, Weaver D, Buttle KF, Balla T, Mannella CA, Hajnoczky G (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174(7):915–921

    Article  PubMed  CAS  Google Scholar 

  • Csordas G, Varnai P, Golenar T, Roy S, Purkins G, Schneider TG, Balla T, Hajnoczky G (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39(1):121–132

    Article  PubMed  CAS  Google Scholar 

  • Czyz A, Kiedrowski L (2003) Inhibition of plasmalemmal Na(+)/Ca(2+) exchange by mitochondrial Na(+)/Ca(2+) exchange inhibitor 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3 H)-one (CGP-37157) in cerebellar granule cells. Biochem Pharmacol 66(12):2409–2411

    Article  PubMed  CAS  Google Scholar 

  • Da Cruz S, De Marchi U, Frieden M, Parone PA, Martinou JC, Demaurex N (2010) SLP-2 negatively modulates mitochondrial sodium-calcium exchange. Cell Calcium 47(1):11–18

    Article  PubMed  CAS  Google Scholar 

  • Dash RK, Beard DA (2008) Analysis of cardiac mitochondrial Na+- Ca2+ exchanger kinetics with a biophysical model of mitochondrial Ca2+ handling suggests a 3:1 stoichiometry. J Physiol 586(13):3267–3285

    Article  PubMed  CAS  Google Scholar 

  • de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456(7222):605–610

    Article  PubMed  CAS  Google Scholar 

  • de Brito OM, Scorrano L (2010) An intimate liaison: spatial organization of the endoplasmic reticulum-mitochondria relationship. EMBO J 29(16):2715–2723

    Article  PubMed  CAS  Google Scholar 

  • DeHaven WI, Smyth JT, Boyles RR, Putney JW Jr (2007) Calcium inhibition and calcium potentiation of Orai1, Orai2, and Orai3 calcium release-activated calcium channels. J Biol Chem 282(24):17548–17556

    Article  PubMed  CAS  Google Scholar 

  • Demaurex N, Distelhorst C (2003) Cell biology. Apoptosis--the calcium connection. Science 300(5616):65–67

    Article  PubMed  CAS  Google Scholar 

  • Demaurex N, Poburko D, Frieden M (2009) Regulation of plasma membrane calcium fluxes by mitochondria. Biochim Biophys Acta 1787(11):1383–1394

    Article  PubMed  CAS  Google Scholar 

  • Dimmer KS, Navoni F, Casarin A, Trevisson E, Endele S, Winterpacht A, Salviati L, Scorrano L (2008) LETM1, deleted in Wolf-Hirschhorn syndrome is required for normal mitochondrial morphology and cellular viability. Hum Mol Genet 17(2):201–214

    Article  PubMed  CAS  Google Scholar 

  • Endele S, Fuhry M, Pak SJ, Zabel BU, Winterpacht A (1999) LETM1, a novel gene encoding a putative EF-hand Ca(2+)-binding protein, flanks the Wolf-Hirschhorn syndrome (WHS) critical region and is deleted in most WHS patients. Genomics 60(2):218–225

    Article  PubMed  CAS  Google Scholar 

  • Frieden M, James D, Castelbou C, Danckaert A, Martinou JC, Demaurex N (2004) Ca(2+) homeostasis during mitochondrial fragmentation and perinuclear clustering induced by hFis1. J Biol Chem 279(21):22704–22714

    Article  PubMed  CAS  Google Scholar 

  • Frieden M, Arnaudeau S, Castelbou C, Demaurex N (2005) Subplasmalemmal mitochondria modulate the activity of plasma membrane Ca2+-ATPases. J Biol Chem 280(52):43198–43208

    Article  PubMed  CAS  Google Scholar 

  • Galluzzi L, Morselli E, Kepp O, Vitale I, Rigoni A, Vacchelli E, Michaud M, Zischka H, Castedo M, Kroemer G (2009) Mitochondrial gateways to cancer. Mol Aspects Med 31(1):1–20

    Article  PubMed  CAS  Google Scholar 

  • Giacomello M, Drago I, Bortolozzi M, Scorzeto M, Gianelle A, Pizzo P, Pozzan T (2010) Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol Cell 38(2):280–290

    Article  PubMed  CAS  Google Scholar 

  • Gilabert JA, Parekh AB (2000) Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca(2+) current I(CRAC). EMBO J 19(23):6401–6407

    Article  PubMed  CAS  Google Scholar 

  • Gilabert JA, Bakowski D, Parekh AB (2001) Energized mitochondria increase the dynamic range over which inositol 1,4,5-trisphosphate activates store-operated calcium influx. EMBO J 20(11):2672–2679

    Article  PubMed  CAS  Google Scholar 

  • Glitsch MD, Bakowski D, Parekh AB (2002) Store-operated Ca2+ entry depends on mitochondrial Ca2+uptake. EMBO J 21(24):6744–6754

    Article  PubMed  CAS  Google Scholar 

  • Griffiths EJ (2009) Mitochondrial calcium transport in the heart: physiological and pathological roles. J Mol Cell Cardiol 46(6):789–803

    Article  PubMed  CAS  Google Scholar 

  • Hajnoczky G, Csordas G (2010) Calcium signalling: fishing out molecules of mitochondrial calcium transport. Curr Biol 20(20):R888–R891

    Article  PubMed  CAS  Google Scholar 

  • Hajnoczky G, Robb-Gaspers LD, Seitz MB, Thomas AP (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82(3):415–424

    Article  PubMed  CAS  Google Scholar 

  • Hajnoczky G, Csordas G, Madesh M, Pacher P (2000) The machinery of local Ca2+ signalling between sarco-endoplasmic reticulum and mitochondria. J Physiol 529(Pt 1):69–81

    Article  PubMed  CAS  Google Scholar 

  • Hajnoczky G, Csordas G, Das S, Garcia-Perez C, Saotome M, Sinha Roy S, Yi M (2006) Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 40(5–6):553–560

    Article  PubMed  CAS  Google Scholar 

  • Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355(6358):353–356

    Article  PubMed  CAS  Google Scholar 

  • Hoth M, Fanger CM, Lewis RS (1997) Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J Cell Biol 137(3):633–648

    Article  PubMed  CAS  Google Scholar 

  • Hoth M, Button DC, Lewis RS (2000) Mitochondrial control of calcium-channel gating: a mechanism for sustained signaling and transcriptional activation in T lymphocytes. Proc Natl Acad Sci USA 97(19):10607–10612

    Article  PubMed  CAS  Google Scholar 

  • Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8(9):1003–1010

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Heo WD, Grimley JS, Wandless TJ, Meyer T (2005) An inducible translocation strategy to rapidly activate and inhibit small GTPase signaling pathways. Nat Methods 2(6):415–418

    Article  PubMed  CAS  Google Scholar 

  • Israelson A, Zaid H, Abu-Hamad S, Nahon E, Shoshan-Barmatz V (2008) Mapping the ruthenium red-binding site of the voltage-dependent anion channel-1. Cell Calcium 43(2):196–204

    Article  PubMed  CAS  Google Scholar 

  • Jiang D, Zhao L, Clapham DE (2009) Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 326(5949):144–147

    Article  PubMed  CAS  Google Scholar 

  • Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427(6972):360–364

    Article  PubMed  CAS  Google Scholar 

  • Korzeniowski MK, Szanda G, Balla T, Spat A (2009) Store-operated Ca2+ influx and subplasmalemmal mitochondria. Cell Calcium 46(1):49–55

    Article  PubMed  CAS  Google Scholar 

  • le Thu T, Ahn JR, Woo SH (2006) Inhibition of L-type Ca2+ channel by mitochondrial Na+- Ca2+ exchange inhibitor CGP-37157 in rat atrial myocytes. Eur J Pharmacol 552(1–3):15–19

    Article  CAS  Google Scholar 

  • Lee KP, Yuan JP, Zeng W, So I, Worley PF, Muallem S (2009) Molecular determinants of fast Ca2+-dependent inactivation and gating of the Orai channels. Proc Natl Acad Sci USA 106(34):14687–14692

    Article  PubMed  CAS  Google Scholar 

  • Lemonnier L, Trebak M, Lievremont JP, Bird GS, Putney JW Jr (2006) Protection of TRPC7 cation channels from calcium inhibition by closely associated SERCA pumps. FASEB J 20(3):503–505

    PubMed  CAS  Google Scholar 

  • Lewis RS (2007) The molecular choreography of a store-operated calcium channel. Nature 446(7133):284–287

    Article  PubMed  CAS  Google Scholar 

  • Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+ store-depletion-triggered Ca2+ influx. Curr Biol 15(13):1235–1241

    Article  PubMed  CAS  Google Scholar 

  • Lis A, Peinelt C, Beck A, Parvez S, Monteilh-Zoller M, Fleig A, Penner R (2007) CRACM1, CRACM2, and CRACM3 are store-operated Ca2+ channels with distinct functional properties. Curr Biol 17(9):794–800

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Ambudkar IS (2001) Characteristics of a store-operated calcium-permeable channel: sarcoendoplasmic reticulum calcium pump function controls channel gating. J Biol Chem 276(32):29891–29898

    Article  PubMed  CAS  Google Scholar 

  • MacQuaide N, Ramay HR, Sobie EA, Smith GL (2010) Differential sensitivity of Ca(2) + wave and Ca(2) + spark events to ruthenium red in isolated permeabilised rabbit cardiomyocytes. J Physiol 588(Pt 23):4731–4742

    Article  PubMed  CAS  Google Scholar 

  • Malli R, Frieden M, Osibow K, Graier WF (2003a) Mitochondria efficiently buffer subplasmalemmal Ca2+ elevation during agonist stimulation. J Biol Chem 278(12):10807–10815

    Article  PubMed  CAS  Google Scholar 

  • Malli R, Frieden M, Osibow K, Zoratti C, Mayer M, Demaurex N, Graier WF (2003b) Sustained Ca2+ transfer across mitochondria is essential for mitochondrial Ca2+ buffering, sore-operated Ca2+ entry, and Ca2+ store refilling. J Biol Chem 278(45):44769–44779

    Article  PubMed  CAS  Google Scholar 

  • Manjarres IM, Rodriguez-Garcia A, Alonso MT, Garcia-Sancho J (2010) The sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) is the third element in capacitative calcium entry. Cell Calcium 47(5):412–418

    Article  PubMed  CAS  Google Scholar 

  • Mathie A, Veale EL (2007) Therapeutic potential of neuronal two-pore domain potassium-channel modulators. Curr Opin Investig Drugs 8(7):555–562

    PubMed  CAS  Google Scholar 

  • Mignen O, Thompson JL, Shuttleworth TJ (2008) Both Orai1 and Orai3 are essential components of the arachidonate-regulated Ca2 + −selective (ARC) channels. J Physiol 586(1):185–195

    Article  PubMed  CAS  Google Scholar 

  • Mignen O, Thompson JL, Shuttleworth TJ (2009) The molecular architecture of the arachidonate-regulated Ca2+-selective ARC channel is a pentameric assembly of Orai1 and Orai3 subunits. J Physiol 587(Pt 17):4181–4197

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  PubMed  CAS  Google Scholar 

  • Montero M, Alonso MT, Carnicero E, Cuchillo-Ibanez I, Albillos A, Garcia AG, Garcia-Sancho J, Alvarez J (2000) Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat Cell Biol 2(2):57–61

    Article  PubMed  CAS  Google Scholar 

  • Naghdi S, Waldeck-Weiermair M, Fertschai I, Poteser M, Graier WF, Malli R (2010) Mitochondrial Ca2+ uptake and not mitochondrial motility is required for STIM1-Orai1-dependent store-operated Ca2+ entry. J Cell Sci 123(Pt 15):2553–2564

    Article  PubMed  CAS  Google Scholar 

  • Neumann JT, Diaz-Sylvester PL, Fleischer S, Copello JA (2010) CGP-37157 inhibits the sarcoplasmic reticulum Ca(2) + ATPase and activates ryanodine receptor channels in striated muscle. Mol Pharmacol 79(1):141–147

    Article  PubMed  CAS  Google Scholar 

  • Nowikovsky K, Froschauer EM, Zsurka G, Samaj J, Reipert S, Kolisek M, Wiesenberger G, Schweyen RJ (2004) The LETM1/YOL027 gene family encodes a factor of the mitochondrial K+ homeostasis with a potential role in the Wolf-Hirschhorn syndrome. J Biol Chem 279(29):30307–30315

    Article  PubMed  CAS  Google Scholar 

  • Orci L, Ravazzola M, Le Coadic M, Shen WW, Demaurex N, Cosson P (2009) STIM1-induced precortical and cortical subdomains of the endoplasmic reticulum. Proc Natl Acad Sci USA 106(46):19358–19362

    Article  PubMed  CAS  Google Scholar 

  • Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4(7):552–565

    Article  PubMed  CAS  Google Scholar 

  • Ozawa T (2001) Ryanodine-sensitive Ca2+ release mechanism in non-excitable cells (review). Int J Mol Med 7(1):21–25

    PubMed  CAS  Google Scholar 

  • Pacher P, Thomas AP, Hajnoczky G (2002) Ca2+ marks: miniature calcium signals in single mitochondria driven by ryanodine receptors. Proc Natl Acad Sci USA 99(4):2380–2385

    Article  PubMed  CAS  Google Scholar 

  • Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL, Parnis J, Nolte C, Fishman D, Shoshan-Barmatz V, Herrmann S, Khananshvili D, Sekler I (2009) NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci USA 107(1):436–441

    Article  PubMed  Google Scholar 

  • Parekh AB (1998) Slow feedback inhibition of calcium release-activated calcium current by calcium entry. J Biol Chem 273(24):14925–14932

    Article  PubMed  CAS  Google Scholar 

  • Parekh AB (2008) Mitochondrial regulation of store-operated CRAC channels. Cell Calcium 44(1):6–13

    Article  PubMed  CAS  Google Scholar 

  • Parekh A (2009) Calcium signalling: mitofusins promote interorganellar crosstalk. Curr Biol 19(5):R200–R203

    Article  PubMed  CAS  Google Scholar 

  • Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85(2):757–810

    Article  PubMed  CAS  Google Scholar 

  • Park MK, Ashby MC, Erdemli G, Petersen OH, Tepikin AV (2001) Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J 20(8):1863–1874

    Article  PubMed  CAS  Google Scholar 

  • Perocchi F, Gohil VM, Girgis HS, Bao XR, McCombs JE, Palmer AE, Mootha VK (2010) MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake. Nature 467(7313):291–296

    Article  PubMed  CAS  Google Scholar 

  • Pinton P, Rimessi A, Romagnoli A, Prandini A, Rizzuto R (2007) Biosensors for the detection of calcium and pH. Methods Cell Biol 80:297–325

    Article  PubMed  CAS  Google Scholar 

  • Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443(7108):230–233

    Article  PubMed  CAS  Google Scholar 

  • Pralong WF, Spat A, Wollheim CB (1994) Dynamic pacing of cell metabolism by intracellular Ca2+ transients. J Biol Chem 269(44):27310–27314

    PubMed  CAS  Google Scholar 

  • Putney JJ (1986) A model for receptor-regulated calcium entry. Cell Calcium 7(1):1–12

    Article  PubMed  CAS  Google Scholar 

  • Quintana A, Schwarz EC, Schwindling C, Lipp P, Kaestner L, Hoth M (2006) Sustained activity of calcium release-activated calcium channels requires translocation of mitochondria to the plasma membrane. J Biol Chem 281(52):40302–40309

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86(1):369–408

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262(5134):744–747

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto R, Duchen MR, Pozzan T (2004) Flirting in little space: the ER/mitochondria Ca2+ liaison. Sci STKE 2004(215):re1

    Article  PubMed  Google Scholar 

  • Rizzuto R, Marchi S, Bonora M, Aguiari P, Bononi A, De Stefani D, Giorgi C, Leo S, Rimessi A, Siviero R, Zecchini E, Pinton P (2009) Ca(2+) transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta 1787(11):1342–1351

    Article  PubMed  CAS  Google Scholar 

  • Robb-Gaspers LD, Burnett P, Rutter GA, Denton RM, Rizzuto R, Thomas AP (1998) Integrating cytosolic calcium signals into mitochondrial metabolic responses. EMBO J 17(17):4987–5000

    Article  PubMed  CAS  Google Scholar 

  • Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169(3):435–445

    Article  PubMed  CAS  Google Scholar 

  • Rottenberg H, Scarpa A (1974) Calcium uptake and membrane potential in mitochondria. Biochemistry 13(23):4811–4817

    Article  PubMed  CAS  Google Scholar 

  • Sampieri A, Zepeda A, Asanov A, Vaca L (2009) Visualizing the store-operated channel complex assembly in real time: identification of SERCA2 as a new member. Cell Calcium 45(5):439–446

    Article  PubMed  CAS  Google Scholar 

  • Scarpa A, Azzone GF (1970) The mechanism of ion translocation in mitochondria. 4. Coupling of K+ efflux with Ca2+ uptake. Eur J Biochem 12(2):328–335

    Article  PubMed  CAS  Google Scholar 

  • Schindl R, Frischauf I, Bergsmann J, Muik M, Derler I, Lackner B, Groschner K, Romanin C (2009) Plasticity in Ca2+ selectivity of Orai1/Orai3 heteromeric channel. Proc Natl Acad Sci USA 106(46):19623–19628

    Article  PubMed  CAS  Google Scholar 

  • Schwindling C, Quintana A, Krause E, Hoth M (2010) Mitochondria positioning controls local calcium influx in T cells. J Immunol 184(1):184–190

    Article  PubMed  CAS  Google Scholar 

  • Shuttleworth TJ (2009) Arachidonic acid, ARC channels, and Orai proteins. Cell Calcium 45(6):602–610

    Article  PubMed  CAS  Google Scholar 

  • Singaravelu K, Nelson C, Bakowski D, Martins de Brito O, Ng SW, Di Capite J, Powell T, Scorrano L, Parekh AB (2011) Mitofusin 2 regulates STIM1 migration from the Ca2+ store to the plasma membrane in cells with depolarised mitochondria. J Biol Chem 286(14):12189–12201

    Article  PubMed  CAS  Google Scholar 

  • Singh BB, Liu X, Tang J, Zhu MX, Ambudkar IS (2002) Calmodulin regulates Ca(2+)-dependent feedback inhibition of store-operated Ca(2+) influx by interaction with a site in the C terminus of TrpC1. Mol Cell 9(4):739–750

    Article  PubMed  CAS  Google Scholar 

  • St Pierre M, Reeh PW, Zimmermann K (2009) Differential effects of TRPV channel block on polymodal activation of rat cutaneous nociceptors in vitro. Exp Brain Res 196(1):31–44

    Article  PubMed  CAS  Google Scholar 

  • Tinel H, Cancela JM, Mogami H, Gerasimenko JV, Gerasimenko OV, Tepikin AV, Petersen OH (1999) Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca(2+) signals. EMBO J 18(18):4999–5008

    Article  PubMed  CAS  Google Scholar 

  • Trenker M, Malli R, Fertschai I, Levak-Frank S, Graier WF (2007) Uncoupling-proteins 2 and 3 are elementary for mitochondrial Ca2+ uniport. Nat Cell Biol 9(4):445–452

    Article  PubMed  CAS  Google Scholar 

  • Vaca L (2010) SOCIC: the store-operated calcium influx complex. Cell Calcium 47(3):199–209

    Article  PubMed  CAS  Google Scholar 

  • Varadi A, Cirulli V, Rutter GA (2004) Mitochondrial localization as a determinant of capacitative Ca2+ entry in HeLa cells. Cell Calcium 36(6):499–508

    Article  PubMed  CAS  Google Scholar 

  • Varnai P, Toth B, Toth DJ, Hunyady L, Balla T (2007) Visualization and manipulation of plasma membrane-endoplasmic reticulum contact sites indicates the presence of additional molecular components within the STIM1-Orai1 Complex. J Biol Chem 282(40):29678–29690

    Article  PubMed  CAS  Google Scholar 

  • Vasington FD, Gazzotti P, Tiozzo R, Carafoli E (1972) The effect of ruthenium red on Ca2+ transport and respiration in rat liver mitochondria. Biochim Biophys Acta 256(1):43–54

    Article  PubMed  CAS  Google Scholar 

  • Walsh C, Barrow S, Voronina S, Chvanov M, Petersen OH, Tepikin A (2009) Modulation of calcium signalling by mitochondria. Biochim Biophys Acta 1787(11):1374–1382

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Youle RJ (2009) The role of mitochondria in apoptosis. Annu Rev Genet 43:95–118

    Article  PubMed  CAS  Google Scholar 

  • Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11(12):872–884

    Article  PubMed  CAS  Google Scholar 

  • Wingrove DE, Amatruda JM, Gunter TE (1984) Glucagon effects on the membrane potential and calcium uptake rate of rat liver mitochondria. J Biol Chem 259(15):9390–9394

    PubMed  CAS  Google Scholar 

  • Wu MM, Buchanan J, Luik RM, Lewis RS (2006) Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J Cell Biol 174(6):803–813

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Tripathy A, Pasek DA, Meissner G (1999) Ruthenium red modifies the cardiac and skeletal muscle Ca(2+) release channels (ryanodine receptors) by multiple mechanisms. J Biol Chem 274(46):32680–32691

    Article  PubMed  CAS  Google Scholar 

  • Yaffe MP (1999) The machinery of mitochondrial inheritance and behavior. Science 283(5407):1493–1497

    Article  PubMed  CAS  Google Scholar 

  • Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443(7108):226–229

    Article  PubMed  CAS  Google Scholar 

  • Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S (2007) STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 9(6):636–645

    Article  PubMed  CAS  Google Scholar 

  • Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437(7060):902–905

    Article  PubMed  CAS  Google Scholar 

  • Zotova L, Aleschko M, Sponder G, Baumgartner R, Reipert S, Prinz M, Schweyen RJ, Nowikovsky K (2010) Novel components of an active mitochondrial K(+)/H(+) exchange. J Biol Chem 285(19):14399–14414

    Article  PubMed  CAS  Google Scholar 

  • Zweifach A, Lewis RS (1995) Slow calcium-dependent inactivation of depletion-activated calcium current. Store-dependent and -independent mechanisms. J Biol Chem 270(24):14445–14451

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Demaurex .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Demaurex, N., Frieden, M. (2012). The Role of Mitochondria in the Activation/Maintenance of SOCE. In: Groschner, K., Graier, W., Romanin, C. (eds) Store-operated Ca2+ entry (SOCE) pathways. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0962-5_14

Download citation

Publish with us

Policies and ethics