Skip to main content

New Aspects of the Contribution of ER to SOCE Regulation

TRPC Proteins as a Link between Plasma Membrane Ion Transport and Intracellular Ca2+ Stores

  • Chapter
  • First Online:
Book cover Store-operated Ca2+ entry (SOCE) pathways

Abstract

Transient receptor potential canonical (TRPC) proteins were identified as molecular candidates of receptor- and/or store-operated channels because of their close homology to the Drosophila TRP and TRPL. Functional studies have revealed that TRPC channels play an integrated part of phospholipase C-transduced cell signaling, mediating Ca2+, as well as Na+, influx into cells. As a consequence, the TRPC channels have diverse functional roles in difference cell types, including metabotropic receptor-evoked membrane depolarization and intracellular Ca2+ concentration regulation. Depending on the cellular environment and the protein partners present in the channel complex, the TRPC channels display different biophysical properties and mechanisms of regulation. Despite the controversy on whether or not TRPC channels are store-operated, evidence exists for physical and functional interactions between plasma membrane-localized TRPC channels and proteins involved in sensing and regulating the intracellular Ca2+ store contents, such as inositol trisphosphate receptors, junctate, STIM, and Homer. The interplay among these proteins will likely define the functional significance of TRPC channel activation in different cellular contexts and under different modes of stimulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambudkar IS (2007) TRPC1: a core component of store-operated calcium channels. Biochem Soc Trans 35:96–100

    Article  PubMed  CAS  Google Scholar 

  • Ambudkar IS, Ong HL, Liu X, Bandyopadhyay BC, Cheng KT (2007) TRPC1: the link between functionally distinct store-operated calcium channels. Cell Calcium 42:213–223

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1995) Capacitative calcium entry. Biochem J 312:1–11

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Bootman MD, Lipp P (1998) Calcium–a life and death signal. Nature 395:645–648

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  PubMed  CAS  Google Scholar 

  • Boulay G, Zhu X, Peyton M, Jian M, Hurst R, Stefani E, Birnbaumer L (1997) Cloning and expression of a novel mammalian homolog of drosophila transient receptor potential (Trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G protein. J Biol Chem 272:29672–29680

    Article  PubMed  CAS  Google Scholar 

  • Boulay G, Brown DM, Qin N, Jiang M, Dietrich A, Zhu MX, Chen Z, Birnbaumer M, Mikoshiba K, Birnbaumer L (1999) Modulation of Ca2+ entry by polypeptides of the inositol 1,4, 5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP3R in store depletion-activated Ca2+ entry. Proc Natl Acad Sci USA 96:14955–14960

    Article  PubMed  CAS  Google Scholar 

  • Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, Tang J, Rietdorf K, Teboul L, Chuang KT, Lin P, Xiao R, Wang C, Zhu Y, Lin Y, Wyatt CN, Parrington J, Ma J, Evans AM, Galione A, Zhu MX (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459:596–600

    Article  PubMed  CAS  Google Scholar 

  • Casteels R, Droogmans G (1981) Exchange characteristics of the noradrenaline-sensitive calcium store in vascular smooth muscle cells or rabbit ear artery. J Physiol 317:263–279

    PubMed  CAS  Google Scholar 

  • Cheng KT, Liu X, Ong HL, Ambudkar IS (2008) Functional requirement for Orai1 in store operated TRPC1-STIM1 channels. J Biol Chem 283:12935–12940

    Article  PubMed  CAS  Google Scholar 

  • Damann N, Owsianik G, Li S, Poll C, Nilius B (2009) The calcium-conducting ion channel transient receptor potential canonical 6 is involved in macrophage inflammatory protein-2-induced migration of mouse neutrophils. Acta Physiol (Oxf) 195:3–11

    Article  CAS  Google Scholar 

  • Dong XP, Shen D, Wang X, Dawson T, Li X, Zhang Q, Cheng X, Zhang Y, Weisman LS, Delling M, Xu H (2010) PI(3,5)P2 controls membrane traffic by direct activation of mucolipin Ca2+ release channels in the endolysosome. Nat Commun 1(4):38

    Article  PubMed  Google Scholar 

  • Fasolato C, Hoth M, Matthews G, Penner R (1993) Ca2+ and Mn2+ influx through receptor-mediated activation of nonspecific cation channels in mast cells. Proc Natl Acad Sci USA 90:3068–3072

    Article  PubMed  CAS  Google Scholar 

  • Freichel M, Vennekens R, Olausson J, Stolz S, Philipp SE, Weissgerber P, Flockerzi V (2005) Functional role of TRPC proteins in native systems: implications from knockout and knock-down studies. J Physiol 567:59–66

    Article  PubMed  CAS  Google Scholar 

  • Greka A, Navarro B, Oancea E, Duggan A, Clapham DE (2003) TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci 6:837–845

    Article  PubMed  CAS  Google Scholar 

  • Hardie RC, Minke B (1992) The trp gene is essential for a light-activated Ca2+ channel in drosophila photoreceptors. Neuron 8:643–651

    Article  PubMed  CAS  Google Scholar 

  • Hardie RC, Minke B (1993) Novel Ca2+ channels underlying transduction in drosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization. Trends Neurosci 16:371–376

    Article  PubMed  CAS  Google Scholar 

  • Hardie RC, Raghu P (2001) Visual transduction in drosophila. Nature 413:186–193

    Article  PubMed  CAS  Google Scholar 

  • Hartmann J, Dragicevic E, Adelsberger H, Henning HA, Sumser M, Abramowitz J, Blum R, Dietrich A, Freichel M, Flockerzi V, Birnbaumer L, Konnerth A (2008) TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59:392–398

    Article  PubMed  CAS  Google Scholar 

  • Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356

    Article  PubMed  CAS  Google Scholar 

  • Hoth M, Penner R (1993) Calcium release-activated calcium current in rat mast cells. J Physiol 465:359–386

    PubMed  CAS  Google Scholar 

  • Hoth M, Fasolato C, Penner R (1993) Ion channels and calcium signaling in mast cells. Ann N Y Acad Sci 707:198–209

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Vaca L, Zhu X, Birnbaumer L, Kunze DL, Schilling WP (1994) Appearance of a novel Ca2+ influx pathway in Sf9 insect cells following expression of the transient receptor potential-like (trpl) protein of drosophila. Biochem Biophys Res Commun 201:1050–1056

    Article  PubMed  CAS  Google Scholar 

  • Hurst RS, Zhu X, Boulay G, Birnbaumer L, Stefani E (1998) Ionic currents underlying HTRP3 mediated agonist-dependent Ca2+ influx in stably transfected HEK293 cells. FEBS Lett 422:333–338

    Article  PubMed  CAS  Google Scholar 

  • Irvine RF (1990) ‘Quantal’ Ca2+ release and the control of Ca2+ entry by inositol phosphates–a possible mechanism. FEBS Lett 263:5–9

    Article  PubMed  CAS  Google Scholar 

  • Jackson TR, Patterson SI, Thastrup O, Hanley MR (1988) A novel tumour promoter, thapsigargin, transiently increases cytoplasmic free Ca2+ without generation of inositol phosphates in NG115-401 L neuronal cells. Biochem J 253:81–86

    PubMed  CAS  Google Scholar 

  • Kim SJ, Kim YS, Yuan JP, Petralia RS, Worley PF, Linden DJ (2003) Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 426:285–291

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Zeng W, Kiselyov K, Yuan JP, Dehoff MH, Mikoshiba K, Worley PF, Muallem S (2006) Homer 1 mediates store- and inositol 1,4,5-trisphosphate receptor-dependent translocation and retrieval of TRPC3 to the plasma membrane. J Biol Chem 281:32540–32549

    Article  PubMed  CAS  Google Scholar 

  • Kim MS, Hong JH, Li Q, Shin DM, Abramowitz J, Birnbaumer L, Muallem S (2009) Deletion of TRPC3 in mice reduces store-operated Ca2+ influx and the severity of acute pancreatitis. Gastroenterology 137:1509–1517

    Article  PubMed  CAS  Google Scholar 

  • Kiselyov K, Xu X, Mozhayeva G (1998) Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 396:478–482

    Article  PubMed  CAS  Google Scholar 

  • Kiselyov K, Mignery GA, Zhu MX, Muallem S (1999) The N-terminal domain of the IP3 receptor gates store-operated hTrp3 channels. Mol Cell 4:423–429

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara K, Wang Y, McAnally J, Richardson JA, Bassel-Duby R, Hill JA, Olson EN (2006) TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest 116:3114–3126

    Article  PubMed  CAS  Google Scholar 

  • Lee KP, Yuan JP, Hong JH, So I, Worley PF, Muallem S (2010) An endoplasmic reticulum/plasma membrane junction: STIM1/Orai1/TRPCs. FEBS Lett 584:2022–2027

    Article  PubMed  CAS  Google Scholar 

  • Lewis RS, Cahalan MD (1989) Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cells. Cell Regul 1:99–112

    PubMed  CAS  Google Scholar 

  • Leypold BG, Yu CR, Leinders-Zufall T, Kim MM, Zufall F, Axel R (2002) Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci U S A 99:6376–6381

    Article  PubMed  CAS  Google Scholar 

  • Liao Y, Erxleben C, Yildirim E, Abramowitz J, Armstrong DL, Birnbaumer L (2007) Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci USA 104:4682–4687

    Article  PubMed  CAS  Google Scholar 

  • Liao Y, Erxleben C, Abramowitz J, Flockerzi V, Zhu MX, Armstrong DL, Birnbaumer L (2008) Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc Natl Acad Sci USA 105:2895–2900

    Article  PubMed  CAS  Google Scholar 

  • Liao Y, Plummer NW, George MD, Abramowitz J, Zhu MX, Birnbaumer L (2009) A role for Orai in TRPC-mediated Ca2+ entry suggests that a TRPC:Orai complex may mediate store and receptor operated Ca2+ entry. Proc Natl Acad Sci USA 106:3202–3206

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Wang W, Singh BB, Lockwich T, Jadlowiec J, O’Connell B, Wellner R, Zhu MX, Ambudkar IS (2000) Trp1, a candidate protein for the store-operated Ca2+ influx mechanism in salivary gland cells. J Biol Chem 275:3403–3411

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Cheng KT, Bandyopadhyay BC, Pani B, Dietrich A, Paria BC, Swaim WD, Beech D, Yildrim E, Singh BB, Birnbaumer L, Ambudkar IS (2007) Attenuation of store-operated Ca2+ current impairs salivary gland fluid secretion in TRPC1−/− mice. Proc Natl Acad Sci USA 104:17542–17547

    Article  PubMed  CAS  Google Scholar 

  • Melvin JE, Yule D, Shuttleworth T, Begenisich T (2005) Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annu Rev Physiol 67:445–469

    Article  PubMed  CAS  Google Scholar 

  • Minke B, Selinger Z (1991) Inositol lipid pathway in fly photoreceptors: excitation, calcium mobilization and retinal degeneration. Prog Retinal Res 11:99–124

    Article  CAS  Google Scholar 

  • Montell C, Rubin GM (1989) Molecular characterization of the drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2:1313–1323

    Article  PubMed  CAS  Google Scholar 

  • Mori Y, Wakamori M, Miyakawa T, Hermosura M, Hara Y, Nishida M, Hirose K, Mizushima A, Kurosaki M, Mori E, Gotoh K, Okada T, Fleig A, Penner R, Iino M, Kurosaki T (2002) Transient receptor potential 1 regulates capacitative Ca2+ entry and Ca2+ release from endoplasmic reticulum in B lymphocytes. J Exp Med 195:673–681

    Article  PubMed  CAS  Google Scholar 

  • Okada T, Shimizu S, Wakamori M, Maeda A, Kurosaki T, Takada N, Imoto K, Mori Y (1998) Molecular cloning and functional characterization of a novel receptor-activated TRP Ca2+ channel from mouse brain. J Biol Chem 273:10279–10287

    Article  PubMed  CAS  Google Scholar 

  • Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T, Yamakuni T, Tanaka I, Shimizu S, Ikenaka K, Imoto K, Mori Y (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca2+-Permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem 274:27359–27370

    Article  PubMed  CAS  Google Scholar 

  • Ong HL, Cheng KT, Liu X, Bandyopadhyay BC, Paria BC, Soboloff J, Pani B, Gwack Y, Srikanth S, Singh BB, Gill DL, Ambudkar IS (2007) Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem 282:9105–9116

    Article  PubMed  CAS  Google Scholar 

  • Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77:901–930

    PubMed  CAS  Google Scholar 

  • Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    Article  PubMed  CAS  Google Scholar 

  • Petersen CC, Berridge MJ, Borgese MF, Bennett DL (1995) Putative capacitative calcium entry channels: expression of drosophila trp and evidence for the existence of vertebrate homologues. Biochem J 311:41–44

    PubMed  CAS  Google Scholar 

  • Philipp S, Cavalié A, Freichel M, Wissenbach U, Zimmer S, Trost C, Marquart A, Murakami M, Flockerzi V (1996) A mammalian capacitative calcium entry channel homologous to drosophila TRP and TRPL. EMBO J 15:6166–6171

    PubMed  CAS  Google Scholar 

  • Philipp S, Hambrecht J, Braslavski L, Schroth G, Freichel M, Murakami M, Cavalié A, Flockerzi V (1998) A novel capacitative calcium entry channel expressed in excitable cells. EMBO J 17:4274–4282

    Article  PubMed  CAS  Google Scholar 

  • Phillips AM, Bull A, Kelly LE (1992) Identification of a drosophila gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene. Neuron 8:631–642

    Article  PubMed  CAS  Google Scholar 

  • Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12

    Article  PubMed  CAS  Google Scholar 

  • Putney JW Jr (1991) Capacitative calcium entry revisited. Cell Calcium 11:611–624

    Article  Google Scholar 

  • Reiser J, Polu KR, Möller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith PL, Clapham DE, Pollak MR (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37:739–744

    Article  PubMed  CAS  Google Scholar 

  • Riccio A, Li Y, Moon J, Kim KS, Smith KS, Rudolph U, Gapon S, Yao GL, Tsvetkov E, Rodig SJ, Van’t Veer A, Meloni EG, Carlezon WA Jr, Bolshakov VY, Clapham DE (2009) Essential role for TRPC5 in amygdala function and fear-related behavior. Cell 137:761–772

    Article  PubMed  CAS  Google Scholar 

  • Rosker C, Graziani A, Lukas M, Eder P, Zhu MX, Romanin C, Groschner K (2004) Ca2+ signaling by TRPC3 involves Na+ entry and local coupling to the Na+/Ca2+ exchanger. J Biol Chem 279:13696–13704

    Article  PubMed  CAS  Google Scholar 

  • Satoh S, Tanaka H, Ueda Y, Oyama J, Sugano M, Sumimoto H, Mori Y, Makino N (2007) Transient receptor potential (TRP) protein 7 acts as a G protein-activated Ca2+ channel mediating angiotensin II-induced myocardial apoptosis. Mol Cell Biochem 294:205–215

    Article  PubMed  CAS  Google Scholar 

  • Sel S, Rost BR, Yildirim AO, Sel B, Kalwa H, Fehrenbach H, Renz H, Gudermann T, Dietrich A (2008) Loss of classical transient receptor potential 6 channel reduces allergic airway response. Clin Exp Allergy 38:1548–1558

    Article  PubMed  CAS  Google Scholar 

  • Seth M, Sumbilla C, Mullen SP, Lewis D, Klein MG, Hussain A, Soboloff J, Gill DL, Inesi G (2004) Sarco(Endo)plasmic reticulum Ca2+ ATPase (SERCA) gene silencing and remodeling of the Ca2+ signaling mechanism in cardiac myocytes. Proc Natl Acad Sci USA 101:16683–16688

    Article  PubMed  CAS  Google Scholar 

  • Stamboulian S, Moutin MJ, Treves S, Pochon N, Grunwald D, Zorzato F, De Waard M, Ronjat M, Arnoult C (2005) Junctate, an inositol 1,4,5-triphosphate receptor associated protein, is present in rodent sperm and binds TRPC2 and TRPC5 but not TRPC1 channels. Dev Biol 286:326–337

    Article  PubMed  CAS  Google Scholar 

  • Stiber JA, Zhang ZS, Burch J, Eu JP, Zhang S, Truskey GA, Seth M, Yamaguchi N, Meissner G, Shah R, Worley PF, Williams RS, Rosenberg PB (2008) Mice lacking homer 1 exhibit a skeletal myopathy characterized by abnormal transient receptor potential channel activity. Mol Cell Biol 28:2637–2647

    Article  PubMed  CAS  Google Scholar 

  • Stowers L, Holy TE, Meister M, Dulac C, Koentges G (2002) Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295:1493–1500

    Article  PubMed  CAS  Google Scholar 

  • Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29:645–655

    Article  PubMed  Google Scholar 

  • Tai C, Hines DJ, Choi HB, Macvicar BA (2010) Plasma membrane insertion of TRPC5 channels contributes to the cholinergic plateau potential in hippocampal CA1 pyramidal neurons. Hippocampus [in press]

    Google Scholar 

  • Tang J, Lin Y, Zhang Z, Tikunova S, Birnbaumer L, Zhu MX (2001) Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxyl termini of trp channels. J Biol Chem 276:21303–21310

    Article  PubMed  CAS  Google Scholar 

  • Thastrup O, Linnebjerg H, Bjerrum PJ, Knudsen JB, Christensen SB (1987) The inflammatory and tumor-promoting sesquiterpene lactone, thapsigargin, activates platelets by selective mobilization of calcium as shown by protein phosphorylations. Biochim Biophys Acta 927:65–73

    Article  PubMed  CAS  Google Scholar 

  • Treves S, Franzini-Armstrong C, Moccagatta L, Arnoult C, Grasso C, Schrum A, Ducreux S, Zhu MX, Mikoshiba K, Girard T, Smida-Rezgui S, Ronjat M, Zorzato F (2004) Junctate is a key element in calcium entry induced by activation of InsP3 receptors and/or calcium store depletion. J Cell Biol 166:537–548

    Article  PubMed  CAS  Google Scholar 

  • Treves S, Vukcevic M, Griesser J, Armstrong CF, Zhu MX, Zorzato F (2010) Agonist-activated Ca2+ influx occurs at stable plasma membrane and endoplasmic reticulum junctions. J Cell Sci 123:4170–4181

    Article  PubMed  CAS  Google Scholar 

  • Tsvilovskyy VV, Zholos AV, Aberle T, Philipp SE, Dietrich A, Zhu MX, Birnbaumer L, Freichel M, Flockerzi V (2009) Deletion of TRPC4 and TRPC6 in mice impairs smooth muscle contraction and intestinal motility in vivo. Gastro 137:1415–1224

    Article  Google Scholar 

  • Vaca L (2010) SOCIC: the store-operated calcium influx complex. Cell Calcium 47:199–209

    Article  PubMed  CAS  Google Scholar 

  • Vaca L, Sampieri A (2002) Calmodulin modulates the delay period between release of calcium from internal stores and activation of calcium influx via endogenous TRP1 channels. J Biol Chem 277:42178–42187

    Article  PubMed  CAS  Google Scholar 

  • Vannier B, Peyton M, Boulay G, Brown D, Qin N, Jiang M, Zhu X, Birnbaumer L (1999) Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca2+ entry channel. Proc Natl Acad Sci USA 96:2060–2064

    Article  PubMed  CAS  Google Scholar 

  • Vazquez G, Lievremont JP, St J, Bird G, Putney JW Jr (2001) Human Trp3 forms both inositol trisphosphate receptor-dependent and receptor-independent store-operated cation channels in DT40 avian B lymphocytes. Proc Natl Acad Sci USA 98:11777–11782

    Article  PubMed  CAS  Google Scholar 

  • Weissmann N, Dietrich A, Fuchs B, Kalwa H, Ay M, Dumitrascu R, Olschewski A, Storch U, Ghofrani HA, Schermuly RT, Pinkenburg O, Seeger W, Grimminger F, Gudermann T, Mederos y Schnitzler M (2006) Classical transient receptor potential Channel 6 (TRPC6) Is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc Natl Acad Sci USA 103:19093–19098

    Article  PubMed  CAS  Google Scholar 

  • Welsh DG, Morielli AD, Nelson MT, Brayden JE (2002) Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res 90:248–250

    Article  PubMed  CAS  Google Scholar 

  • Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a drosophila store-operated channel. Proc Natl Acad Sci USA 92:9652–9656

    Article  PubMed  CAS  Google Scholar 

  • Winn MP, Conlon PJ, Lynn KL (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308:1801–1804

    Article  PubMed  CAS  Google Scholar 

  • Worley PF, Zeng W, Huang GN, Yuan JP, Kim JY, Lee MG, Muallem S (2007) TRPC channels as STIM1-regulated store-operated channels. Cell Calcium 42:205–211

    Article  PubMed  CAS  Google Scholar 

  • Yan HD, Villalobos C, Andrade R (2009) TRPC channels mediate a muscarinic receptor-induced afterdepolarization in cerebral cortex. J Neurosci 29:10038–10046

    Article  PubMed  CAS  Google Scholar 

  • Yuan JP, Kiselyov K, Shin DM et al (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114:777–789

    Article  PubMed  CAS  Google Scholar 

  • Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S (2007) STIM1 Heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 9:636–645

    Article  PubMed  CAS  Google Scholar 

  • Zeng W, Yuan JP, Kim MS, Choi YJ, Huang GN, Worley PF, Muallem S (2008) STIM1 Gates TRPC channels, but not Orai1, by electrostatic interaction. Mol Cell 32:439–448

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Tang J, Tikunova S, Johnson JD, Chen Z, Qin N, Dietrich A, Stefani E, Birnbaumer L, Zhu MX (2001) Activation of Trp3 by inositol 1,4,5-trisphosphate receptors through displacement of inhibitory calmodulin from a common binding domain. Proc Natl Acad Sci USA 98:3168–3173

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Chu PB, Peyton M, Birnbaumer L (1995) Molecular cloning of a widely expressed human homologue for the drosophila trp gene. FEBS Lett 373:193–198

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Jiang M, Peyton M, Boulay G, Hurst R, Stefani E, Birnbaumer L (1996) trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85:661–671

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Jiang M, Birnbaumer L (1998) Receptor-activated Ca2+ influx via human Trp3 stably expressed in human embryonic kidney HEK293 cells. Evidence for a non-capacitative Ca2+ entry. J Biol Chem 273:133–142

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Xi Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Bavencoffe, A., Zhu, M.X. (2012). New Aspects of the Contribution of ER to SOCE Regulation. In: Groschner, K., Graier, W., Romanin, C. (eds) Store-operated Ca2+ entry (SOCE) pathways. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0962-5_12

Download citation

Publish with us

Policies and ethics