Skip to main content

AC Electrokinetic Micro- and Nano-particle Manipulation and Characterization

  • Chapter

Part of the book series: CISM Courses and Lectures ((CISM,volume 530))

Abstract

Automated or remote manipulation and characterization of particles is a key element in microfluidic devices. Microelectrodes integrated into microfluidic devices can generate large electric fields and field gradients using low voltages. The field gradients can be used to actively drive the motion of particles by dielectrophoresis. In this chapter, the basis of AC electrokinetics is reviewed and example applications for manipulation and characterization of particles are provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • A. Ashkin. Optical trapping and manipulation of neutral particles using lasers. Proc. Natl. Acad. Sci. USA, 94:4853–4860, 1997.

    Article  Google Scholar 

  • A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, and Steven Chu. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 11:288–290, 1986.

    Article  Google Scholar 

  • D.J. Beebe, G.A. Mensing, and G.M. Walker. Physics and applications of microfluidics in Biology. Annu. Rev. Biomed. Eng., 4:261–286, 2002.

    Article  Google Scholar 

  • M.R. Bown and C.D. Meinhart. AC electroosmotic flow in a DNA concentrator. Microfluidics Nanofluidics, 2:513–523, 2006.

    Article  Google Scholar 

  • J.P.H. Burt, T.A.K. Al-Ameen, and R. Pethig. An optical dielectrophoresis spectrometer for low-frequency measurements on colloidal suspensions. J. Phys. E: Sci. Instrum., 22:952–957, 1989.

    Article  Google Scholar 

  • A. Castellanos, A. Ramos, A. González, N.G. Green, and H. Morgan. Electrohydrodynamics and dielectrophoresis in microsystems: Scaling laws. J. Phys. D: Appl. Phys., 36:2584–2597, 2003.

    Article  Google Scholar 

  • I. Ermolina and H. Morgan. The electrokinetic properties of latex particles: comparison of electrophoresis and dielectrophoresis. J. Colloid Interface Science, 285:419–428, 2005.

    Article  Google Scholar 

  • G. Fuhr, W.M. Arnold, R. Hagedorn, T. Müller, W. Benecke, B. Wagner, and U. Zimmermann. Levitation, holding, and rotation of cells within traps made by high-frequency fields. Biochimica et Biophysica Acta, 1108:215–223, 1992.

    Article  Google Scholar 

  • P.R.C. Gascoyne and J. Vykoukal. Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proc. IEEE Inst. Electr. Electron. Eng., 92:22–42, 2004.

    Article  Google Scholar 

  • N.G. Green and H. Morgan. Dielectrophoresis of submicrometer latex spheres. 1. Experimental results. J. Phys. Chem. B, 103:41–50, 1999.

    Article  Google Scholar 

  • N.G. Green, A. Ramos, and H. Morgan. Ac electrokinetics: a survey of sub-micrometer particle dynamics. J. Phys. D: Appl. Phys., 33:632–641, 2000.

    Article  Google Scholar 

  • B.G. Hawkins, A.E. Smith, Y.A. Syed, and B.J. Kirby. Continuous-Flow Particle Separation by 3D Insulative Dielectrophoresis Using Coherently Shaped, dc-Biased, ac Electric Fields. Analytical Chemistry, 79:7291–7300, 2007.

    Article  Google Scholar 

  • D. Holmes, H. Morgan, and N.G. Green. High throughput particle analysis: Combining dielectrophoretic particle focussing with confocal optical detection. Biosensors Bioelectronics, 21:1621–1630, 2006.

    Article  Google Scholar 

  • Y. Huang, R. Holzel, R. Pethig, and X-B Wang. Differences in the ac electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Phys. Med. Biol., 37:1499–1517, 1992.

    Article  Google Scholar 

  • M.P. Hughes and H. Morgan. Dielectrophoretic characterization and separation of antibody coated submicrometer latex spheres. Analytical Chemistry, 71:3441–3445, 1999.

    Article  Google Scholar 

  • T.B. Jones. Electromechanics of particles. Cambridge University Press, 1995.

    Google Scholar 

  • L. Kremser, D. Blaas, and E. Kenndler. Capillary electrophoresis of biological particles: Viruses, bacteria, and eukaryotic cells. Electrophoresis, 25:2282–2291, 2004.

    Article  Google Scholar 

  • N.A. Lacher, K.E. Garrison, R.S. Martin, and S.M. Lunte. Microchip capillary electrophoresis/electrochemistry. Electrophoresis, 22:2526–2536, 2001.

    Article  Google Scholar 

  • B.H. Lapizco-Encinas, B.A. Simmons, E.B. Cummings, and Y. Fintschenko. Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water. Electrophoresis, 25:1695–1704, 2004a.

    Article  Google Scholar 

  • B.H. Lapizco-Encinas, B.A. Simmons, E.B. Cummings, and Y. Fintschenko. Dielectrophoretic Concentration and Separation of Live and Dead Bacteria in an Array of Insulators. Analytical Chemistry, 76:1571–1579, 2004b.

    Article  Google Scholar 

  • T. Laurell, F. Petersson, and A. Nilsson. Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem. Soc. Rev.,, 36:492–506, 2007.

    Article  Google Scholar 

  • G.B. Lee, C.I. Hung, B.J. Ke, G.R. Huang, B.H. Hwei, and H.F. Lai. Hydrodynamic Focusing for a Micromachined Flow Cytometer. J. Fluids Eng., 123:672–679, 2001.

    Article  Google Scholar 

  • H. Morgan and N.G. Green. AC Electrokinetics: colloids and nanoparticles. Research Studies Press, 2003.

    Google Scholar 

  • H. Morgan, M.P. Hughes, and N.G. Green. Separation of submicron bioparticles by dielectrophoresis. Biophys. J., 77:516–525, 1999.

    Article  Google Scholar 

  • H. Morgan, D. Holmes, and N.G. Green. High speed simultaneous single particle impedance and fluorescence analysis on a chip. Current Applied Physics, 6:367–370, 2006.

    Article  Google Scholar 

  • H. Morgan, T. Sun, D. Holmes, S. Gawad, and N.G. Green. Single cell dielectric spectroscopy. J. Phys. D: Appl. Phys., 40:61–70, 2007.

    Article  Google Scholar 

  • T. Müller, A. Gerardino, T. Schnelle, S.G. Shirley, F. Bordoni, G. De Gasperis, R. Leoni, and G. Fuhr. Trapping of micrometre and sub-micrometre particles by high-frequency electric fields and hydrodynamic forces. J. Phys. D: Appl. Phys., 29:340–349, 1996.

    Article  Google Scholar 

  • T. Müller, G. Gradl, S. Howitz, S. Shirley, T. Schnelle, and G. Fuhr. A 3-d microelectrode system for handling and caging single cells and particles. Biosensors and Bioelectronics, 14:247–256, 1999.

    Article  Google Scholar 

  • N. Pamme. Magnetism and microfluidics. Lab Chip, 6:24–38, 2006.

    Article  Google Scholar 

  • R. Pethig. Dielectric and electronic properties of biological materials. John Wiley & Sons, 1979.

    Google Scholar 

  • H.A. Pohl. Dielectrophoresis. Cambridge University Press, 1978.

    Google Scholar 

  • J.A.R. Price, J.P.H. Burt, and R. Pethig. Applications of a new optical technique for measuring the dielectrophoretic behaviour of micro-organisms. Biochimica et Biophysica Acta, 964:221–230, 1988.

    Article  Google Scholar 

  • A. Ramos, H. Morgan, N.G. Green, and A. Castellanos. Ac electrokinetics: a review of forces in microelectrode structures. J. Phys. D: Appl. Phys., 31:2338–2353, 1998.

    Article  Google Scholar 

  • R. Rodriguez-T rujillo, C.A. Mills, J. Samitier, and G. Gomila. Low cost micro-Coulter counter with hydrodynamic focusing. Microfluid. Nanofluid., 3:171–176, 2007.

    Article  Google Scholar 

  • J. Rousselet, G.H. Markx, and R. Pethig. Separation of erythrocytes and latex beads by dielectrophoretic levitation and hyperlayer field-flow fractionation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 140:209–216, 1998.

    Article  Google Scholar 

  • T. Schnelle, T. Müller, S. Fiedler, and G. Fuhr. The influence of higher moments on particle behaviour in dielectrophoretic field cages. J. Electrostatics, 46:13–28, 1999.

    Article  Google Scholar 

  • T. Schnelle, T. Müller, and G. Fuhr. Trapping in AC octode field cages. J. Electrostatics, 50:17–29, 2000.

    Article  Google Scholar 

  • H.A. Stone, A.D. Stroock, and A. Ajdari. Engineering flows in small devices: Microfluidics toward a Lab-on-a-Chip. Annu. Rev. Fluid Mech., 36:381–411, 2004.

    Article  Google Scholar 

  • T. Sun, H. Morgan, and N.G. Green. Analytical solutions of ac electrokinetics in interdigitated electrode arrays: Electric field, dielectrophoretic and traveling-wave dielectrophoretic forces. Phys. Rev. E, 76:046610, 2007.

    Article  Google Scholar 

  • T. Sun, S. Gawad, C. Bernabini, N.G. Green, and H. Morgan. Broadband single cell impedance spectroscopy using maximum length sequences: theoretical analysis and practical considerations. Measurement Science & Technology, 18:2859–2868, 2007a.

    Article  Google Scholar 

  • T. Sun, D. Holmes, S. Gawad, N.G. Green, and H. Morgan. High speed multi-frequency impedance analysis of single particles in a microfluidic cytometer using maximum length sequences. Lab Chip, 7:1034–1040, 2007b.

    Article  Google Scholar 

  • R.S. Thomas, H. Morgan, and N.G. Green. Negative DEP traps for single cell immobilisation. Lab Chip, 9:1534–1540, 2009.

    Article  Google Scholar 

  • S. Tuukkanen, A. Kuzyk, J.J. Toppari, H. Hakkinen, V.P. Hytonen, E. Niskanen, M. Rinkio, and P. Torma. Trapping of 27 bp-8 kbp DNA and immobilization of thiol-modified DNA using dielectrophoresis. Nanotechnology, 18:295204, 2007.

    Article  Google Scholar 

  • M.D. Vahey and J. Voldman. High-Throughput Cell and Particle Characterization Using Isodielectric Separation. Analytical Chemistry, 81: 2446–2455, 2009.

    Article  Google Scholar 

  • J. Voldman. Biomems: Building with cells. Nature Materials, 2:433–434, 2003.

    Article  Google Scholar 

  • J. Voldman. Electrical forces for microscale cell manipulation. Annu. Rev. Biomed. Eng., 8:425–454, 2006.

    Article  Google Scholar 

  • J. Voldman, R.A. Braff, M. Toner, M.L. Gray, and Martin A. Schmidt. Holding forces of single-particle dielectrophoretic traps. Biophysical J., 80:531–542, 2001.

    Article  Google Scholar 

  • J. Voldman, M.L. Gray, M. Toner, and Martin A. Schmidt. A microfabrication-based dynamic array cytometer. Analytical Chemistry, 74:3984–3990, 2002.

    Article  Google Scholar 

  • C. Wälti, W.A. Germishuizen, P. Tosch, C.F. Kaminski, and A.G. Davies. AC electrokinetic manipulation of DNA. J. Phys. D: Appl. Phys., 40: 114–118, 2007.

    Article  Google Scholar 

  • X-B Wang, R. Pethig, and T.B. Jones. Relationship of dielectrophoretic and electrorotational behaviour exhibited by polarized particles. J. Phys. D: Appl. Phys., 25:905–912, 1992.

    Article  Google Scholar 

  • X-B Wang, Y. Huang, R. Holzel, J.P.H. Burt, and R. Pethig. Theoretical and experimental investigations of the interdependence of the dielectric, dielectrophoretic and electrorotational behaviour of colloidal particles. J. Phys. D: Appl. Phys., 26:312–322, 1993.

    Article  Google Scholar 

  • M. Wiklund, C. Günther, R. Lemor, M. Jäger, G. Fuhr, and H.M. Hertz. Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip. Lab Chip, 6:1537–1544, 2006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 CISM, Udine

About this chapter

Cite this chapter

Sun, T., Morgan, H. (2011). AC Electrokinetic Micro- and Nano-particle Manipulation and Characterization. In: Ramos, A. (eds) Electrokinetics and Electrohydrodynamics in Microsystems. CISM Courses and Lectures, vol 530. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0900-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0900-7_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0899-4

  • Online ISBN: 978-3-7091-0900-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics