Skip to main content

Toxic Effects of Heavy Metals on Germination and Physiological Processes of Plants

  • Chapter
  • First Online:
Book cover Toxicity of Heavy Metals to Legumes and Bioremediation

Abstract

Pollution of the environment by toxic metals in recent years has accelerated dramatically due to rapid industrial progress. Heavy metals when taken up in amounts in excess of the normal concentration produce lethal effects on plants, on microbes, and directly or indirectly on the human health. Deleterious impact of metals on plants includes the reduction in germinability of seeds, inactivation of enzymes, damage to cells by acting as antimetabolites, or formation of precipitates or chelates with essential metabolites. Heavy metals also show unconstructive effects on other physiological processes like photosynthesis, gaseous exchange, water relations, and mineral/nutrient absorption by plants. These adverse effects may be due to the generation of reactive oxygen species which may cause oxidative stress. The impact of heavy metals on germination of legume seeds and different physiological events of plants with special reference to leguminous plants grown in distinct agroecological niches is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwala SC, Nautiyal BD, Chatterjee C, Nautiyal N (1995) Variations in copper and zinc supply influence growth and activities of some enzymes in maize. Soil Sci Plant Nutr 41:329–335

    CAS  Google Scholar 

  • AI-Rumaih MM, Rushdy SS, Warsy AS (2001) Effect of cadmium chloride on seed germination and growth characteristics of cowpea (Vigna unguiculata l.) plants in the presence and absence of gibberellic acid. Saudi J Biol Sci 8:41–50

    Google Scholar 

  • Arora NK, Khare E, Singh S, Maheshwari DK (2010) Effect of Al and heavy metals on enzymes of nitrogen metabolism of fast and slow growing rhizobia under explanta conditions. World J Microbiol Biotechnol 26:811–816

    CAS  Google Scholar 

  • Arun KS, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Google Scholar 

  • Atici O, Ağar G, Battal P (2005) Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biol Plant 49:215–222

    CAS  Google Scholar 

  • Atıcı Ö, Agar G, Battal P (2003) Interaction between endogenous plant hormones and α-amylase in germinating chickpea seeds under cadmium exposure. Fresenius Environ Bull 12:781–785

    Google Scholar 

  • Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14:93–107

    CAS  Google Scholar 

  • Barcelo J, Poschenriender C, Ruano A, Gunse B (1985) Leaf water potential in Cr(VI) treated bean plants (Phaseolus vulgaris L). Plant Physiol Suppl 77:163–164

    Google Scholar 

  • Barcelo J, Cabot C, Poschenrieder C (1986) Cadmium induced decrease of water stress resistance in bush bean plants (Phaseolus vulgaris L.). II. Effects of Cd on endogenous abscisic acid levels. Plant Physiol 125:27–34

    CAS  Google Scholar 

  • Berglund AH, Mike F, Quartacci MF, Calucci LC, Navari-Izzo F, Pinzino C, Liljenberg C (2002) Alterations of wheat root plasma membrane lipid composition induced by copper stress result in changed physicochemical properties of plasma membrane lipid vesicles. Biochim Biophys Acta 1564:466–472

    PubMed  CAS  Google Scholar 

  • Bert V, Meerts P, Saumitou-Laprade P, Salis P, Gruber W, Verbruggen N (2003) Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant Soil 249:9–18

    CAS  Google Scholar 

  • Bibi M, Hussain M (2005) Effect of copper and lead on photosynthesis and plant pigments in black gram (Vigna mungo L.). Bull Environ Contam Toxicol 74:1126–1133

    PubMed  CAS  Google Scholar 

  • Bouazizi H, Jouili H, Geitmann A, Ferjani EEI (2010) Copper toxicity in expanding leaves of Phaseolus vulgaris L.: antioxidant enzyme response and nutrient element uptake. Ecotoxicol Environ Saf 73:1304–1308

    PubMed  CAS  Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminum on net efflux of nitrate and potassium from root tips of soybean (Glycine max L.). J Plant Physiol 130:400–403

    Google Scholar 

  • Cambrolle J, Mateos-Naranjo E, Redondo-Gomez S, Luque T, Figueroa ME (2011) Growth, reproductive and photosynthetic responses to copper in the yellow-horned poppy, Glaucium flavum Crantz. Environ Exp Bot 71:57–64

    CAS  Google Scholar 

  • Caro A, Puntarulo S (1996) Effect of in vivo iron supplementation on oxygen radical production by soybean roots. Biochim Biophys Acta 1229:245–251

    Google Scholar 

  • Casano LM, Gomez LD, Lascano HR, Gonzales CA, Trippi VS (1997) Inactivation and degradation of CuZn-SOD by active oxygen species in wheat chloroplasts exposed to photo-oxidative stress. Plant Cell Physiol 38:433–440

    PubMed  CAS  Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, Ferjani EE (1997) Cadmium and Zn induction of lipid peroxidation and effects of antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147

    CAS  Google Scholar 

  • Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74

    PubMed  CAS  Google Scholar 

  • Cortes OEJ, Barbosa LAD, Kiperstok A (2003) Biological treatment of industrial liquid effluent in copper production industry. Tecbahia Revista Baiana de Tecnologia 18:89–99

    Google Scholar 

  • Cyplik P, Grajek W, Marecik R, Kroliczak P (2007) Effect of macro/micronutrients and carbon source over the denitrification rate of Haloferax denitrifications archaeon. Enzyme Microb Technol 40:212–220

    CAS  Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36

    PubMed  CAS  Google Scholar 

  • de Vries W, Romkens PF, Schutze G (2007) Critical soil concentrations of cadmium, lead, and mercury in view of health effects on humans and animals. Rev Environ Contam Toxicol 191:91–130

    PubMed  Google Scholar 

  • Dewar J, Taylor JRN, Berjak P (1998) Changes in selected plant growth regulators during germination in sorghum. Seed Sci Res 8:1–8

    CAS  Google Scholar 

  • Dickinson RE, Cicerone RJ (1986) Future global warming from atmospheric trace gases. Nature 319:109–115

    CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2002) Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L.cv. Azad) root mitochondria. Plant Cell Environ 25:687–690

    CAS  Google Scholar 

  • Doelman P, Haanstra L (1984) Short-term and long-term effects of Cd, Cr, Cu, Ni, Pb, and Zn on microbial respiration in relation to abiotic soil factors. Plant Soil 79:317–321

    CAS  Google Scholar 

  • Ernst WHO (1998) Effects of heavy metals in plants at the cellular and organismic level ecotoxicology. In: Gerrit S, Bernd M (eds) Bioaccumulation and biological effects of chemicals. Wiley and Spektrum Akademischer, New York, pp 587–620

    Google Scholar 

  • Ernst WHO, Verkleij JAC, Schat H (1990) Evolutionary biology of metal resistance in Silene vulgaris. Evol Trends Plants 4:45–51

    Google Scholar 

  • Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41:229–248

    CAS  Google Scholar 

  • Fargasova A (1994) Effect of Pb, Cd, Hg, As and Cr on germination and root growth of Sinapsis alba seeds. Bull Environ Contam Toxicol 52:452–456

    PubMed  CAS  Google Scholar 

  • Fargašová A (1998) Root growth inhibition, photosynthetic pigments production, and metal accumulation in Synapis alba as the parameters for trace metals effect determination. Bull Environ Contam Toxicol 61:762–769

    PubMed  Google Scholar 

  • Ferguson SJ (1998) Nitrogen cycle enzymology. Curr Opin Chem Biol 2:182–193

    PubMed  CAS  Google Scholar 

  • Fernandes JC, Henriques FS (1991) Biochemical, physiological and structural effects of excess copper in plants. Bot Rev 57:246–273

    Google Scholar 

  • Fodor E, Szabo-Nagy A, Erdel L (1995) The effects of cadmium on the fluidity and H+ ATPase activity of plasma membrane from sunflower and wheat roots. J Plant Physiol 147:87–92

    CAS  Google Scholar 

  • Fornazier RF, Ferreira RR, Victoria AP, Molina SMG, Lea PJ, Azevedo RA (2002) Effect of cadmium on antioxidant enzyme activities in sugarcane. Biol Plant 45:91–97

    CAS  Google Scholar 

  • Forstner U (1995) Land contamination by metals: global scope and magnitude of problem. In: Allen HE, Huang CP, Bailey GW, Bowers AR (eds) Metal speciation and contamination of soil. CRC, Boca Raton, FL, pp 1–33

    Google Scholar 

  • Fuhrer J (1988) Ethylene biosynthesis and cadmium toxicity in leaf tissue of beans Phaseolus vulgaris L. Plant Physiol 70:162–167

    Google Scholar 

  • Gajewska E, Skłodowska M, Laba M, Mazur J (2006) Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biol Plant 50:653–659

    CAS  Google Scholar 

  • Garg N, Bhandari P (2011) Influence of cadmium stress and arbuscular mycorrhizal fungi on nodule senescence in Cajanus cajan (L.) Mill sp. Int J Phytoremed 14:62–74

    Google Scholar 

  • Giller KE, McGrath SP, Hirsch PR (1989) Absence of nitrogen fixation in clover grown on soil subject to long-term contamination with heavy metals is due to survival of only ineffective Rhizobium. Soil Biol Biochem 21:841–848

    CAS  Google Scholar 

  • Girotti AW (1985) Mechanism of lipid peroxidation. J Free Radic Biol Med 1:87–95

    PubMed  CAS  Google Scholar 

  • Gonçalves JF, Antes FG, Maldaner J, Pereira LB, Tabaldi LA, Rauber R, Rossato LV, Bisognin DA, Dressler VL, de Moraes Flores EM, Nicoloso FT (2009) Cadmium and mineral nutrient accumulation in potato plantlets grown under cadmium stress in two different experimental culture conditions. Plant Physiol Biochem 47:814–821

    PubMed  Google Scholar 

  • Gross R, Auslitz J, Schramel P, Payer HD (1987) Concentrations of lead, cadmium, mercury and other elements in seeds of Lupinus mutabilis and of other legumes. J Environ Pathol Toxicol Oncol 7:59–65

    PubMed  CAS  Google Scholar 

  • Gwozdz EA, Przymusinski R, Rucinska R, Deckert J (1997) Plant cell responses to heavy metals: molecular and physiological aspects. Acta Physiol Plant 19:459–465

    CAS  Google Scholar 

  • Hamman B, Koning G, Him Lok K (2003) Homeopathically prepared gibberellic acid and barley seed germination. Homeopathy 92:140–144

    PubMed  CAS  Google Scholar 

  • Hansch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266

    PubMed  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Meharg AA (2001) Copper and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ 24:713–772

    CAS  Google Scholar 

  • Hemida SK, Omar SA, Abdel-Mallek AY (1997) Microbial populations and enzyme activity in soil treated with heavy metals. Water Air Soil Pollut 95:13–22

    CAS  Google Scholar 

  • Hernandez LE, Cooke DT (1997) Modification of the root plasma membrane lipid composition of Cd treated Pisum sativum. J Exp Bot 48:1375–1381

    CAS  Google Scholar 

  • Holleman AF, Wiberg E (1985) Lehrbuch der Anorganischen Chemie. Walter de Gruyter, Berlin, p 868

    Google Scholar 

  • Holtan-Hartwig L, Bechmann M, Hoyas TR, Linjordet R, Bakken LR (2002) Heavy metals tolerance of soil denitrifying communities: N2O dynamics. Soil Biol Biochem 34:1181–1190

    CAS  Google Scholar 

  • Hristozkova M, Geneva M, Stancheva I (2006) Response of pea plants (Pisum sativum L.) to reduced supply with molybdenum and copper. Int J Agric Biol 8:218–220

    CAS  Google Scholar 

  • Hsu FR, Chou CH (1992) Inhibitory effects of heavy metals on seed germination and seedling growth of Miscanthus species. Bot Bull Acad Sin 33:335–342

    CAS  Google Scholar 

  • Hsu YT, Kao CH (2003) Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. -. Plant Cell Environ 26:867–874

    PubMed  CAS  Google Scholar 

  • Hussain M, Ahmad MSA, Kausar A (2006) Effect of lead and chromium on growth, photosynthetic pigments and yield components in mash bean [Vigna mungo (L.) Hepper]. Pak J Bot 38:1389–1396

    Google Scholar 

  • Imlay JA, Chin SM, Lin S (1988) Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240:640–642

    PubMed  CAS  Google Scholar 

  • Jain R, Srivastava S, Madan VK, Jain R (2000) Influence of chromium on growth and cell division of sugarcane. Indian J Plant Physiol 5:228–231

    CAS  Google Scholar 

  • Jamal SN, Iqbal MZ, Athar M (2006) Effect of aluminum and chromium on the germination and growth of two Vigna species. Int J Environ Sci Technol 3:53–58

    CAS  Google Scholar 

  • Janicka-Russak M, Kabala K, Burzynski M, Kobus G (2008) Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus roots. J Exp Bot 59:3721–3728

    PubMed  CAS  Google Scholar 

  • Jayakumar K, Jaleel CA, Azooz MM (2008) Impact of cobalt on germination and seedling growth of Eleusine coracana L. and Oryza sativa L. under hydroponic culture. Global J Mol Sci 3:18–20

    CAS  Google Scholar 

  • Kappus H (1985) Lipid peroxidation: mechanisms. In: Sites H (ed) Analysis enzymology and biological relevance of oxidative stress. Academic, London, pp 273–310

    Google Scholar 

  • Kono Y, Fridovich I (1982) Superoxide radical inhibits catalase. J Biol Chem 257:5751–5754

    PubMed  CAS  Google Scholar 

  • Korashy HM, El-Kadi AOS (2008) Modulation of TCDD-mediated induction of cytochrome P450 1A1 by mercury, lead, and copper in human HepG2 cell line. Toxicol In Vitro 22:154–158

    PubMed  CAS  Google Scholar 

  • Krupa Z (1999) Cadmium against higher plant photosynthesis- a variety of effects and where do they possibly come from. Z Naturforsch 54c:723–729

    Google Scholar 

  • Lagisz M, Laskowski R (2008) Evidence for between-generation effects in carabids exposed to heavy metals pollution. Ecotoxicology 17:59–66

    PubMed  CAS  Google Scholar 

  • Lasat MM, Pence NS, Garvin DF, Ebbs SD, Kochian LV (2000) Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J Exp Biol 51:71–79

    CAS  Google Scholar 

  • Lequeux H, Hermans C, Lutts S, Verbruggen N (2010) Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Biochem 48:673–682

    PubMed  CAS  Google Scholar 

  • Letham DS (1994) Cytokinins as phytohormones-sites of biosynthesis, translocation and function of translocated cytokinins. In: Mok DWS, Mok MC (eds) Cytokinins: chemistry, activity and function. CRC, Boca Raton, FL, pp 57–80

    Google Scholar 

  • Letham DS, Palni LMS (1983) The biosynthesis and metabolism of cytokinins. Annu Rev Plant Physiol 34:163–197

    CAS  Google Scholar 

  • Li Y, Trush MA (1993a) DNA damage resulting from the oxidation of hydroquinone by copper: role for a Cu(II)/Cu/I) redox cycle and reactive oxygen generation. Carcinogenes 7:1303–1311

    Google Scholar 

  • Li Y, Trush MA (1993b) Oxidation of hydroquinone by copper: chemical mechanism and biological effects. Biochem Biophys Acta 300:346–355

    CAS  Google Scholar 

  • Luna CM, Gonzalez CA, Trippi VS (1994) Oxidative damage caused by an excess of copper in oat leaves. Plant Cell Physiol 35:11–15

    CAS  Google Scholar 

  • Lund BO, Miller BM, Woods JS (1993) Studies on Hg(II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria. Biochem Biopharmacol 45:2017–2024

    CAS  Google Scholar 

  • Macfarlane GR, Burchett MD (2001) Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove, Avicennia marina (Forsk.) Vierh. Mar Pollut Bull 42:233–240

    PubMed  CAS  Google Scholar 

  • Mahieu S, Frérot H, Vidal C, Galiana A, Heulin K, Maure L, Brunel B, Lefèbvre C, Escarré J, Cleyet-Marel JC (2011) Anthyllis vulneraria/Mesorhizobium metallidurans, an efficient symbiotic nitrogen fixing association able to grow in mine tailings highly contaminated by Zn, Pb and Cd. Plant Soil 342:405–417

    CAS  Google Scholar 

  • Maksymiec W, Bednara J, Baszynski T (1995) Response of runner bean plants to excess copper as a function of plant growth stages: effects on morphology and structure of primary leaves and their chloroplast ultrastructure. Photosynthetica 31:427–435

    CAS  Google Scholar 

  • Manivasagaperumal R, Vijayarengan P, Balamurugan S, Thiyagarajan G (2011) Effect of copper on growth, dry matter yield and nutrient content of vigna radiata (l.) wilczek. J Phytol 3:53–62

    CAS  Google Scholar 

  • Mateos-Naranjo E, Redondo-Gomez S, Cambrolle J, Figueroa ME (2008) Growth and photosynthetic responses to copper stress of an invasive cordgrass, Spartina densiflora. Mar Environ Res 66:459–465

    PubMed  CAS  Google Scholar 

  • Matraszek R (2008) Nitrate reductase activity of two leafy vegetables as affected by nickel and different nitrogen forms. Acta Physiol Plant 30:361–370

    CAS  Google Scholar 

  • Mazhoudi S, Chaoui A, Ghorbal MH, El Ferjani E (1997) Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum, Mill). Plant Sci 127:129–137

    CAS  Google Scholar 

  • McGrath SP, Chaudri AM, Giller KE (1995) Long-term effects of metals in sewage sludge on soils, microorganisms and plants. J Ind Microbiol 14:94–104

    PubMed  CAS  Google Scholar 

  • Mcllveen WD, Nagusanti JJ (1994) Nickel in the terrestrial environment. Sci Total Environ 148:109–138

    Google Scholar 

  • Mehrag AA (1993) The role of plasmalemma in metal tolerance in angiosperms. Physiol Plant 88:191–198

    Google Scholar 

  • Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178

    PubMed  CAS  Google Scholar 

  • Moffat AS (1999) Engineering plants to cope with metals. Science 285:369–370

    PubMed  CAS  Google Scholar 

  • Molina AS, Nievas C, Pérez Chaca MV, Garibotto F, González U, Marsá SM, Luna C, Giménez MS, Zirulnik F (2008) Cadmium-induced oxidative damage and antioxidative defense mechanisms in Vigna mungo L. Plant Growth Regul 56:285–295

    CAS  Google Scholar 

  • Monni S, Salemaa M, Millar N (2000) The tolerance of Empetrum nigrum to copper and nickel. Environ Pollut 109:221–229

    PubMed  CAS  Google Scholar 

  • Monni S, Uhlig C, Hansen E, Magel E (2001) Ecophysiological responses of Empetrum nigrum to heavy metal pollution. Environ Pollut 112:121–129

    PubMed  CAS  Google Scholar 

  • Moussa HR (2004) Effect of cadmium on growth and oxidative metabolism of faba bean plants. Acta Agron Hung 52:269–276

    CAS  Google Scholar 

  • Mysliwa-Kurdziel B, Strzatka K (2002) Influences of metals on biosynthesis of photosynthetic pigments. In: Prasad MNV, Strzatka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer, Dortrecht, pp 201–227

    Google Scholar 

  • Nasim SA, Dhir B (2010) Heavy metals alter the potency of medicinal plants. Rev Environ Contam Toxicol 203:139–149

    PubMed  CAS  Google Scholar 

  • Navarro MC, Perez-Sirvent C, Martinez-Sanchez MJ, Vidal J, Tovar PJ, Bech J (2008) Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. J Geochem Explor 96:183–193

    CAS  Google Scholar 

  • Nieboer E, Richardson DHS (1980) The replacement of the nodescript term heavy metal by a biologically significant and chemically significant classification of metal ions. Environ Pollut B1:3–26

    Google Scholar 

  • Ortega-Villasante C, Rellán-Álvarez R, Del Campo FF, Carpena-Ruiz RO, Hernández LE (2005) Cellular damage induced by cadmium and mercury in Medicago sativa. J Exp Bot 56:2239–2251

    PubMed  CAS  Google Scholar 

  • Ouzounidou G, Eleftheriou EP, Karataglis S (1992) Ecophysiological and ultrastructural effects of copper in Thlaspi ochroleucum (Cruciferae). Can J Bot 70:947–957

    CAS  Google Scholar 

  • Panda SK, Choudhary S (2005) Chromium stress in plants. Braz J Plant Physiol 17:19–102

    Google Scholar 

  • Panda SK, Patra HK (2000) Nitrate and ammonium ions effect on the chromium toxicity in developing wheat seedlings. Proc Natl Acad Sci India B 70:75–80

    CAS  Google Scholar 

  • Pandey J, Pandey U (2009) Accumulation of heavy metals in dietary vegetables and cultivated soil horizon in organic farming system in relation to atmospheric deposition in a seasonally dry tropical region of India. Environ Monit Assess 148:61–74

    PubMed  CAS  Google Scholar 

  • Parmar G, Chanda V (2005) Effects of mercury and chromium on peroxidase and IAA oxidase enzymes in the seedlings of Phaseolus vulgaris. Turk J Biol 29:15–21

    CAS  Google Scholar 

  • Peralta JR, Gardea Torresdey JL, Tiemann KJ, Gomez E, Arteaga S, Rascon E (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L). Bull Environ Contam Toxicol 66:727–34

    PubMed  CAS  Google Scholar 

  • Philippot L, Højberg O (1999) Dissimilatory nitrate reductase in bacteria. Biochim Biophys Acta 1446(1–2):1–23

    PubMed  CAS  Google Scholar 

  • Polle A (1997) Defense against photo-oxidative damage in plants. In: Scandalos JG (ed) Oxidative stress and the molecular biology of antioxidant defences. Cold Spring Harbor Laboratory Press, New York, pp 623–666

    Google Scholar 

  • Poschenreider CR, Gunse B, Barcelo L (1989) Influence of cadmium on water relations, stomatal resistance and abscisic acid content in expanding bean leaves. Plant Physiol 90:1365–1371

    Google Scholar 

  • Pospíšilová J (2003) Participation of phytohormones in the stomatal regulation of gas exchange during water stress. Biol Plant 46:491–506

    Google Scholar 

  • Price AH, Hendry GAF (1991) Iron catalyzed oxygen radical formation and its possible contribution to drought damage in nine native grasses and three cereals. Plant Cell Environ 14:477–484

    CAS  Google Scholar 

  • Quartacci MF, Cosi E, Navari-Izzo F (2001) Lipid and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J Exp Bot 52:77–84

    PubMed  CAS  Google Scholar 

  • Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60:97–104

    PubMed  CAS  Google Scholar 

  • Sakadevan K, Zheng H, Bavor HJ (1999) Impact of heavy metals on denitrification in surface wetland sediments receiving wastewater. Water Sci Technol 40:349–355

    CAS  Google Scholar 

  • Salisbury FB, Ross CW (1992) Plant physiology, 2nd edn. Wadsworth, Belmont

    Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995a) Mechanisms of Cd mobility and accumulation in Indian mustard. Plant Physiol 109:427–433

    Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995b) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    PubMed  CAS  Google Scholar 

  • Samantaray S, Rout GR, Das P (1999) Studies on differential tolerance of mungbean cultivars to metalliferous mine wastes. Agribiol Res 52:193–201

    Google Scholar 

  • Sanita di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants—a review. Environ Exp Bot 41:105–130

    Google Scholar 

  • Seregin L, Kozhevnikova A (2006) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 53:257–277

    CAS  Google Scholar 

  • Seuntjens P, Nowack B, Schulin R (2004) Root-zone modeling of heavy metal uptake and leaching in the presence of organic ligands. Plant Soil 265:61–73

    CAS  Google Scholar 

  • Shainberg O, Rubin B, Rabinowitch HD, Tel-Or E (2001) Loading beans with sublethal levels of copper enhances conditioning to oxidative stress. J Plant Physiol 158:1415–1421

    CAS  Google Scholar 

  • Shalaby AM, Al-Wakeel SAM (1995) Changes in nitrogen metabolism enzyme activities of Vicia faba in response to aluminum and cadmium. Biol Plant 37:101–106

    CAS  Google Scholar 

  • Shamsi IH, Wei K, Zhang GP, Jilani GH, Hassan MJ (2008) Interactive effects of cadmium and aluminum on growth and antioxidative enzymes in soybean. Biol Plant 52:165–169

    CAS  Google Scholar 

  • Shanker AK (2003) Physiological, biochemical and molecular aspects of chromium toxicity and tolerance in selected crops and tree species. Ph.D. Thesis, Tamil Nadu Agricultural University, Coimbatore, India

    Google Scholar 

  • Shanker AK, Sudhagar R, Pathmanabhan G (2003) Growth, phytochelatin SH and antioxidative response of sunflower as affected by chromium speciation. In: 2nd International congress of plant physiology on sustainable plant productivity under changing environment, New Delhi, India

    Google Scholar 

  • Sharma DC, Sharma CP (2003) Chromium uptake and toxicity effects on growth and metabolic activities in wheat, Triticum aestivum. Indian J Exp Biol 34:689–691

    Google Scholar 

  • Sharma J, Subhadra AV (2010) The effect of mercury on nitrate reductase activity in bean leaf segments (Phaseolus vulgaris) and its chelation by phytochelatin synthesis. Life Sci Med Res 2010: 1–8, LSMR-13. E-ISSN: 19487886. http://astonjournals.com/lsmr

  • Shaw BP, Rout NP (2002) Mercury and cadmium induced changes in the level of praline and the activity of praline biosynthesizing enzymes in Phaseolus aureus Roxb. and Triticum aestivum L. Biol Plant 45:267–271

    CAS  Google Scholar 

  • Sheoran IS, Aggarwala N, Singh R (1990) Effect of cadmium and nickel on in vitro carbon dioxide exchange rate of pigeon pea (Cajanus cajan L.). Plant Soil 129:243–249

    CAS  Google Scholar 

  • Shewfelt RI, Erickson MC (1991) Role of lipid peroxidation in the mechanism of membrane associated disorders in edible plant tissue. Trends Food Sci Technol 2:152–154

    CAS  Google Scholar 

  • Smiri M (2011) Effect of cadmium on germination, growth, redox and oxidative properties in Pisum sativum seeds. J Environ Chem Ecotoxicol 3:52–59

    CAS  Google Scholar 

  • Sobolev D, Begonia MFT (2008) Effects of heavy metal contamination upon soil microbes: lead-induced changes in general and denitrifying microbial communities as evidenced by molecular markers. Int J Environ Res Public Health 5:450–456

    PubMed  CAS  Google Scholar 

  • Solanki R, Dhankhar R (2011) Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia 66:195–204

    CAS  Google Scholar 

  • Stimpfl E, Aichner M, Cassar A, Thaler C, Andreaus O, Matteazzi A (2006) The state of fruit orchard soils in South Tyrol (Italy). Laimburg J 3:74–134

    Google Scholar 

  • Stobrawa K, Lorenc-Plucińska G (2008) Thresholds of heavy-metal toxicity in cuttings of European black poplar (Populus nigra L.) determined according to antioxidant status of fine roots and morphometrical disorders. Sci Total Environ 390:86–96

    PubMed  CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    PubMed  CAS  Google Scholar 

  • Suciu I, Cosma C, Todica M, Bolboaca SD, Jantschi L (2008) Analysis of soil heavy metal pollution and pattern in Central Transylvania. Int J Mol Sci 9:434–453

    PubMed  CAS  Google Scholar 

  • Talanova VV, Titov AF, Boeva NP (2000) Effect of increasing concentrations of lead and cadmium on cucumber seedlings. Biol Plant 43:441–444

    CAS  Google Scholar 

  • Talukdar D (2011) Effect of arsenic-induced toxicity on morphological traits of Trigonella foenum-graecum L. and Lathyrus sativus L. during germination and early seedling growth. Curr Res J Biol Sci 3:116–123

    CAS  Google Scholar 

  • Thomas DJ, Avenson TJ, Thomas JB, Herbert SK (1998) A cyanobacterium lacking iron superoxide dismutase is sensitized to oxidative stress induced with methyl viologen but not sensitized to oxidative stress induced with norflurazon. Plant Physiol 116:1593–1602

    PubMed  CAS  Google Scholar 

  • Tripathi AK, Sadhna T, Tripathi S (1999) Changes in some physiological and biochemical characters in Albizia lebbek as bio-indicators of heavy metal toxicity. J Environ Biol 20:93–98

    CAS  Google Scholar 

  • Tyler G, Pahlsson AM, Bengtsson G, Baath E, Tranvik L (1989) Heavy metal ecology and terrestrial plants, microorganisms and invertebrates: a review. Water Air Soil Pollut 47:189–215

    CAS  Google Scholar 

  • Upadhyay RK, Panda SK (2009) Copper-induced growth inhibition, oxidative stress and ultrastructural alterations in freshly grown water lettuce (Pistia stratiotes L.). CR Biol 332:623–632

    CAS  Google Scholar 

  • Ureta A, Imperial J, Ruiz-Argueso T, Palacios JM (2005) Rhizobium leguminosarum Biovar viciae symbiotic hydrogenase activity and processing are limited by the level of nickel in agricultural soils. Appl Environ Microbiol 71:7603–7606

    PubMed  CAS  Google Scholar 

  • Vaalgamaa S, Conley DJ (2008) Detecting environmental change in estuaries: nutrient and heavy metal distributions in sediment cores in estuaries from the Gulf of Finland, Baltic Sea. Estuar Coast Shelf Sci 76(1):45–56

    Google Scholar 

  • Vajpayee P, Sharma SC, Tripathi RD, Rai UN, Yunus M (1999) Bioaccumulation of chromium and toxicity to photosynthetic pigments, nitrate reductase activity and protein content of Nelumbo nucifera Gaertn. Chemosphere 39:2159–2169

    CAS  Google Scholar 

  • Vajpayee P, Tripathi RD, Rai UN, Ali MB, Singh SN (2000) Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere 41:1075–1082

    PubMed  CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Google Scholar 

  • Van Staden J, Davey J, Brown NAC (1982) Endogenous cytokinins in seed development and germination. In: Khan AA (ed) The physiology and biochemistry of seed development, dormancy and germination. Elsevier Biomed, Amsterdam, pp 137–156

    Google Scholar 

  • Vassilev A, Berova M, Zlatev Z (1998) Influence of Cd on growth, chlorophyll content and water relations in young barley plants. BioI Plant 41:601–606

    CAS  Google Scholar 

  • Vazques MD, Poschenrieder CH, Barcelo J (1987) Chromium (VI) induced structural changes in bush bean plants. Ann Bot 59:427–38

    Google Scholar 

  • Verkleij JAC, Schat H (1990) Mechanisms of metal tolerance in higher plants. In: Shaw J (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC, Boca Raton, pp 179–193

    Google Scholar 

  • Vijayaragavan M, Prabhahar C, Sureshkumar J, Natarajan A, Vijayarengan P, Sharavanan S (2011) Toxic effect of cadmium on seed germination, growth and biochemical contents of cowpea (Vigna unguiculata L.) plants. Int Multidisciplinary Res J 1(5):01–06

    CAS  Google Scholar 

  • Wang QR, Liu XM, Cui YS, Dong YT, Christie P (2002) Responses of legume and non-legume crop species to heavy metals in soils with multiple metal contamination. J Environ Sci Health A Tox Hazard Subst Environ Eng 37:611–621

    PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008a) Effect of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil. Bull Environ Contam Toxicol 81:152–158

    PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008b) Effect of metal tolerant plant growth promoting Rhizobium on the performance of pea grown in metal amended soil. Arch Environ Contam Toxicol 55:33–42

    PubMed  CAS  Google Scholar 

  • Weckx JEJ, Clijsters HMM (1996) Oxidative damage and defense mechanisms in primary leaves of Phasolus vulgaris as a result of root assimilation of toxic amounts of copper. Physiol Plant 96:506–512

    CAS  Google Scholar 

  • Weigel HJ (1985) Inhibition of photosynthetic reactions of isolated intact chloroplast by cadmium. J Plant Physiol 119:179–189

    CAS  Google Scholar 

  • Wierzbicka M, Obidzinska J (1998) The effect of lead on seed imbibition and germination in different plant species. Plant Sci 137:155–171

    CAS  Google Scholar 

  • Wozny A, Zatorska BF, Mlodzianowski F (1982) Influence of lead on the development of lupin seedlings and ultrastructural localization of this metal in the roots. Acta Soc Bot Pol 51:345–351

    CAS  Google Scholar 

  • Xiong ZT (1997) Bioaccumulation and physiological effects of excess lead in a roadside pioneer species Sonchus oleraceus L. Environ Pollut 97:275–279

    PubMed  CAS  Google Scholar 

  • Xiong ZT (1998) Lead uptake and effects on seed germination and plant growth in a Pb hyperaccumulator Brassica pekinensis Rupr. Bull Environ Contam Toxicol 60:285–291

    PubMed  CAS  Google Scholar 

  • Yang MG, Lin XY, Yang XE (1998) Effect of Cd on growth and nutrient accumulation of different plant species. Chin J Appl Ecol 19:89–94

    Google Scholar 

  • Yang Y, Chen YX, Tian GM, Zhang ZJ (2005) Microbial activity related to N cycling in the rhizosphere of maize stressed by heavy metals. J Environ Sci (China) 17:448–451

    CAS  Google Scholar 

  • Yangye C (2005) Effects of heavy metals on ammonification, nitrification and denitrification in maize rhizosphere. Pedosphere 11:115–122

    Google Scholar 

  • Yurekli F, Porgali ZB (2006) The effects of excessive exposure to copper in bean plants. Acta Biol Cracoviensia Ser Bot 48(2):7–13

    Google Scholar 

  • Zaccheo P, Genevini PL, Cocucci S (1982) Chromium ions toxicity on the membrane transport mechanism in segments of maize seedling roots. J Plant Nutr 5:1217–1227

    CAS  Google Scholar 

  • Zaccheo P, Cocucci M, Cocucci S (1985) Effects of Cr on proton extrusion, potassium uptake and transmembrane electric potential in maize root segments. Plant Cell Environ 8:721–726

    CAS  Google Scholar 

  • Zeid IM (2001) Responses of Phaseolus vulgaris to chromium and cobalt treatments. Biol Plant 44:111–115

    CAS  Google Scholar 

  • Zhang FQ, Wang YS, Lou ZP, Dong JD (2007) Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67:44–50

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvaze Ahmad Wani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Wani, P.A., Khan, M.S., Zaidi, A. (2012). Toxic Effects of Heavy Metals on Germination and Physiological Processes of Plants. In: Zaidi, A., Wani, P., Khan, M. (eds) Toxicity of Heavy Metals to Legumes and Bioremediation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0730-0_3

Download citation

Publish with us

Policies and ethics