Skip to main content

Arguments for the use of dopamine receptor agonists in clinical and preclinical Parkinson’s disease

  • Conference paper

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 65))

Summary

On the basis of experimental studies which have demonstrated deleterious effects of L-DOPA (L-3,4-dihydroxyphenylalanine) in vivo and in vitro, it has been suggested that L-DOPA itself may contribute to the progression of Parkinson’s disease. This hypothesis is, for many clinicians, the rationale for postponing the employment of and reducing the applied dosage of L-DOPA and for beginning therapy with dopamine receptor agonists or the monoamine oxidase type B (MAO-B) inhibitor selegiline. Furthermore, clinical studies have demonstrated that early treatment with dopamine receptor agonists is associated with a lower incidence of motor fluctuations and dyskinesia. Dopamine receptor agonists exert their symptomatic effect by directly activating dopamine receptors, bypassing the presynaptic synthesis of dopamine and the degenerating nigro-striatal dopaminergic system. They can thus also be of benefit late in the therapy of the disorder. In addition, the pharmacological profile of dopamine receptor agonists suggests a possible neuroprotective effect. This paper reviews briefly the pharmacology of dopamine receptor agonists and basic knowledge concerning the dopamine receptor stimulation which underlies their therapeutic effect. Preclinical approaches for demonstrating neuroprotective effects and their clinical relevance are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andén NE, Rubenson H, Fuxe K (1967) Evidence for dopamine receptor stimulation by apomorphine. J Pharm Pharmacol 19: 627–629

    Article  PubMed  Google Scholar 

  • Barbeau A, Sourkes TL, Murphy GF (1962) Les catecholamines dans la maladie de Parkinson. In: de Ajuriaguerra J (ed) Monoamines et Systeme Nerveux Central. Masson & Cie, Paris, pp 247–262

    Google Scholar 

  • Barone P, Bravi D, Bermejo-Pareja F, Marconi R, Kulisevski J, Malagu S, Weiser R, Rost N (1999) Pergolide monotherapy in the treatment of early PD: a randomized, controlled study. Pergolide monotherapy study group. Neurology 53: 573–579

    Article  PubMed  CAS  Google Scholar 

  • Battistin L, Bardin PG, Ferro-Milone F, Ravenna C, Toso V, Reboldi G (1999) Alpha-dihydroergocryptine in Parkinson’s disease: a multicentre randomized double blind parallel group study. Acta Neurol Scand 99: 36–42

    Article  PubMed  CAS  Google Scholar 

  • Birkmayer W, Hornykiewicz O (1961) Der l-Dioxyphenylalanineffekt bei der Parkinson-Akinese. Wien Klin Wochenschr 73: 787–788

    PubMed  CAS  Google Scholar 

  • Brecht HM (1998) Dopaminagonisten im Vergleich. Akt Neurol 25[Suppl 4]: S310–316

    Article  Google Scholar 

  • Carvey PM, Pieri S, Ling ZD (1997) Attenuation of levodopa-induced toxicity in mesencephalic cultures by pramipexole. J Neural Transm 104: 209–228

    Article  PubMed  CAS  Google Scholar 

  • Cassarino DS, Fall CP, Smith TS, Bennett JP (1998) Pramipexole reduces reactive oxygen species production in vivo and in vitro and inhibits the mitochondrial permeability transition produced by the Parkinsonian neurotoxin methylpyridinium ion. J Neurochem 71: 295–301

    Article  PubMed  CAS  Google Scholar 

  • Clow A, Freestone C, Lewis E, Dexter D, Sandler M, Glover V (1993) The effect of pergolide and MDL 72974 on rat brain CuZn superoxide dismutase. Neurosci Lett 164: 41–43

    Article  PubMed  CAS  Google Scholar 

  • Corrigan MH, Denahan AQ, Wright CE, Ragual RJ, Evans DL (2000) Comparison of pramipexole, fluoxetine, and placebo in patients with major depression. Depression and Anxiety 11: 58–65

    Article  PubMed  CAS  Google Scholar 

  • Cotzias G, Papavasiliou PS, Fehling C (1970) Similarities between neurologic effects of l-Dopa and of apomorphine. N Engl J Med 283: 31–33

    Article  Google Scholar 

  • De Keyser J, De Backer J-P, Wilczak N, Herroelen L (1995) Dopamine agonists used in the treatment of Parkinson’s disease and their selectivity for the D1, D2 and D3 dopamine receptors in human striatum. Prog Neuropsychopharmacol Biol Psychiatry 19: 1147–1154

    Article  PubMed  Google Scholar 

  • Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Wien Klin Wochenschr 38: 1236–1239

    CAS  Google Scholar 

  • Fahn S (1997) Levodopa-induced neurotoxicity. Does it represent a problem for the treatment of Parkinson’s disease? CNS Drugs 8: 376–393

    Article  CAS  Google Scholar 

  • Felten DL, Felten SY, Fuller RW, Romano TD, Smalstig EB, Wong DT, Clemens JA (1992) Chronic dietary pergolide preserves nigrostriatal integrity in aged-Fischer-344 rats. Neurobiol Aging 13: 339–351

    Article  PubMed  CAS  Google Scholar 

  • Ferreira JJ, Galitzky M, Montastruc JL, Rascol O (2000) Sleep attacks and Parkinson’s disease treatment. Lancet 355: 1333–1334

    Article  PubMed  CAS  Google Scholar 

  • Frucht S, Rogers JD, Greeene PE, Gordon MF, Fahn S (1999) Falling asleep at the wheel: motor vehicle mishaps in persons taking pramipexole and ropinirole. Neurology 52: 1908–1010

    Article  PubMed  CAS  Google Scholar 

  • Gassen M, Glinka Y, Pinchasi B, Youdim MBH (1996) Apomorphine is a highly potent free radical scavenger in rat brain mitochondrial fraction. Eur J Pharmacol 308: 219–225

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Riederer P, Youdim MBH (1995) Neuroprotective therapeutic strategies: comparison of experimental and clinical results. Biochem Pharmacol 50: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Double KL, Youdim MBH, Riederer P (2000a) Strategies for the protection of dopaminergic neurons against neurotoxicity. Neurotox Res 2: 99–114

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Riederer P, Reichmann H (2000b) Präklinische und klinische Aspekte von Dopamin-Agonisten. Was ist gesichert? Nervenheilkunde 19: 53–59

    Google Scholar 

  • Gille G, Rausch W-D, Hung S-T, Moldzio R, Ngyuen A, Janetzky B, Engfer A, Reichmann H (2002) Protection of dopaminergic neurons in primary culture by lisuride. J Neural Transm 109: 157–169

    Article  PubMed  CAS  Google Scholar 

  • Grünblatt E, Mandel S, Berkuzki T, Youdim MBH (1999) Apomorphine protects against MPTP-induced neurotoxicity in mice. Mov Disord 14: 612–618

    Article  PubMed  Google Scholar 

  • Gurevich EV, Joyce JN (1998) Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2 receptor expressing neurons. Neuropsy-chopharmacology 20: 60–80

    Article  Google Scholar 

  • Hall ED, Andrus PK, Oostveen JA, Althaus JS, Von-Voigtlander PF (1996) Neuroprotective effects of the dopamine D2/D3 agonist pramipexole against postischemic or methamphetamine-induced degeneration of nigrostriatal neurons. Brain Res 742:80–88

    Article  PubMed  CAS  Google Scholar 

  • Hundemer HP, Lledo A, van Laar T, Oertel WH, Schwarz J, Wolters E (2000) The safety of pergolide monotherapy in early-stage Parkinson’s disease. One-year interim analysis of a 3-year double-blind, randomized study of pergolide versus levodopa. Mov Disord 15[Suppl 3]: 115

    Google Scholar 

  • Jaber M, Robinson SW, Missale C, Caron MG (1996) Dopamine receptors and brain function. Neuropharmacology 35: 1503–1519

    Article  PubMed  CAS  Google Scholar 

  • Kitamura Y, Kohno Y, Nakazawa M, Nomura Y (1997) Inhibitory effects of talipexole and pramipexole on MPTP-induced dopamine reduction in the striatum of C57BL/6N mice. Jpn J Pharmacol 74: 51–57

    Article  PubMed  CAS  Google Scholar 

  • Lieberman A, Olanow CW, Sethi K, Swanson P, Waters CH, Fahn S, Hurtig H, Yahr MA (1998) A multicenter trial of ropinirole as adjunct treatment for Parkinson’s disease. Neurology 51: 1057–1062

    Article  PubMed  CAS  Google Scholar 

  • Marek K, Seibyl J, Shoulson I, Holloway R, Kieburtz K, McDermott M, Kamp C, Shinaman A, Fahn S, Lang A, Weiner W, Welsh M, and the Parkinson Study Group (2002) Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA 287: 1653–1661

    Article  CAS  Google Scholar 

  • Metman LV, Gillespie M, Farmer C, Bibbiani F, Konitsiotis S, Morris M, Shill H, Bara-Jimenez W, Mouradian MM, Chase TN (2001) Continuous transdermal dopaminergic stimulation in advanced Parkinson’s disease. Clin Neuropharmacol 24: 163–169

    Article  PubMed  CAS  Google Scholar 

  • Müngersdorf M, Sommer U, Reichmann H (1999) Therapy with high-dose ropinirole in patients with fluctuating Parkinson’s disease. Eur J Neurol 6[Suppl 3]: 132

    Google Scholar 

  • Müngersdorf M, Sommer U, Sommer M, Reichmann H (2001) High-dose therapy with ropinirole in patients with Parkinson’s disease. J Neural Transm 108: 1309–1317

    Article  PubMed  Google Scholar 

  • Muralikrishnan D, Mohanakumar KP (1998) Neuroprotection by bromocriptine against l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine-induced neurotoxicity in mice. FASEB J 12: 905–912

    PubMed  CAS  Google Scholar 

  • Nishibayashi S, Asanuma M, Kohno R, Gomez-Vargas M, Ogawa N (1996) Scavenging effects of dopamine agonists on nitric oxide radicals. J Neurochem 67: 2208–2211

    Article  PubMed  CAS  Google Scholar 

  • Neusch C, Böhme V, Riesland N, Althaus M, Moser A (2000) The dopamine D2 receptor agonist alpha-dihydroergocryptine modulates voltage-gated sodium channels in the rat caudate-putamen. J Neural Transm 107: 531–541

    Article  PubMed  CAS  Google Scholar 

  • Ogawa N, Tanaka K, Asanuma M, Kawai M, Masumizu T, Kohno M, Mori A (1994) Bromocriptine protects mice against 6-hydroxydopamine and scavenges hydroxyl free radicals in vitro. Brain Res 657: 207–213

    Article  PubMed  CAS  Google Scholar 

  • Opacka-Juffry J, Wilson AW, Blunt SB (1998) Effects of pergolide treatment on in vivo hydroxyl free radical formation during infusion of 6-hydroxydopamine in rat striatum. Brain Res 810: 27–33

    Article  PubMed  CAS  Google Scholar 

  • Pal S, Bhattacharya KF, Agapito C, Chaudhuri KR (2001) A study of excessive daytime sleepiness and its clinical significance in three groups of Parkinson’s disease patients taking pramipexole, cabergoline and levodopa mono and combination therapy. J Neural Transm 108: 71–77

    Article  PubMed  CAS  Google Scholar 

  • Parkinson Study Group (2000) Pramipexole versus levodopa as initial treatment for Parkinson’s disease. JAMA 284: 1931–1938

    Article  Google Scholar 

  • Pedersen V, Double K, Riederer P, Gerlach M, Schmidt WJ (1999) Behavioral, biochemical and neurochemical effects of dopamine agonists in an animal model of Parkinson’s disease. Göttingen Neurobiology Report, vol 2. Thieme, Stuttgart, Abstract No 746

    Google Scholar 

  • Piercey MF, Hoffmann WE, Smith MW, Hyslop DK (1996) Inhibition of dopamine neuron firing by pramipexole, a dopamine D3 receptor-preferring agonist: comparison to other dopamine receptor agonists. Eur J Pharmacol 312: 35–44

    Article  PubMed  CAS  Google Scholar 

  • Przuntek H, Welzel D, Gerlach M, Blümner E, Danielczyk W, Kaiser HJ, Kraus PH, Letzel H, Riederer P, Überia K (1996) Early institution of bromocriptine in Parkinson’s disease inhibits the emergence of levodopa-associated motor side effects. Long-term results of the PRADO study. J Neural Transm 103: 699–715

    Article  PubMed  CAS  Google Scholar 

  • Przuntek T, Conrad B, Dichgans J, Kraus PH, Krauseneck P, Pergande G, Rinne U, Schimrigk K, Schnitker J, Vogel H (1999) SELEDO: a 5-year long-term trial on the effect of selegiline in early parkinsonian patients treated with levodopa. Eur J Neurol 6: 141–150

    Article  PubMed  CAS  Google Scholar 

  • Rakshi JS, Bailey DL, Takeshi U, Morrish PK, Ito K, Brooks DJ (1998) Is ropinirole, a selective D2 receptor agonist, neuroprotective in early Parkinson’s disease? An (18F)dopa PET study. Neurology 50: A330

    Google Scholar 

  • Rascol O, Brooks DJ, Korczyn AD, Deyn PP, Clarke CE, Lang AE, for the 056 Study Group (2000) A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med 342: 1484–1491

    Article  PubMed  CAS  Google Scholar 

  • Riederer P (1988) Biochemie dopaminerger Systeme. In: Fischer P-A, Frieling B (eds) Morbus Parkinson — neue Möglichkeiten mit Lisurid. de Gruyter, Berlin, pp 13–25

    Google Scholar 

  • Rinne UK (1999) Kombinationstherapie mit Lisurid und l-Dopa in den Frühstadien der Parkinson-Krankheit verringert und verzögert die Entwicklung motorischer Fluktuationen. Nervenarzt 1[Suppl]: S19–25

    Article  Google Scholar 

  • Rinne UK, Bracco F, Chouza C, Dupont E, Gershanik O, Marti Masso JF, Montastruc JL, Marsden CD, Dubini A (1998) Early treatment of Parkinson’s disease with cabergoline delays the onset of motor complications. Results of a double-blind levodopa controlled trial. Drugs 55[Suppl 1]: 23–30

    Article  PubMed  CAS  Google Scholar 

  • Runge I, Horowski R (1991) Can we differentiate symptomatic and neuroprotective effects in Parkinsonism? J Neural Transm [P-D Sect] 4: 273–283

    Google Scholar 

  • Saiardi A, Bozzi Y, Baik JH, Borrelli E (1997) Antiproliferate role of dopamine: loss of D2 receptors causes hormonal dysfunction and pituitary hyperplasia. Neuron 19: 115–126

    Article  PubMed  CAS  Google Scholar 

  • Sano I (1960) Biochemistry of the extrapyramidal system. Shinkei Kenkyu no Shimpo Adv Neurol Sci 5: 42–48

    Google Scholar 

  • Schmauss C (2000) Dopamine receptors: novel insights from biochemical and genetic studies. Neuroscientist 6: 127–138

    Article  CAS  Google Scholar 

  • Schrag AE, Brooks DJ, Brunt E, Fuell D, Korczyn A, Poewe W, Quinn NP, Rascol O, Stocchi F (1998) The safety of ropinirole, a selective nonergoline dopamine agonist, in patients with Parkinson’s disease. Clin Neuropharmacol 21: 169–175

    PubMed  CAS  Google Scholar 

  • Sharma JC, Ross IN (1999) Long term role of pergolide as an adjunct therapy in Parkinson’s disease: influence on disability, blood pressure, weight and levodopa syndrome. Parkinson Relat Disord 5: 111–114

    Article  CAS  Google Scholar 

  • Stocchi F (1998) Dopamine agonists in Parkinson’s disease. What is their role in early treatment? CNS Drugs 10: 159–170

    Article  CAS  Google Scholar 

  • Stocchi F, Vacca L, Berardelli A, De Pandis F, Ruggieri S (2001) Long-duration effect and the postsynaptic compartment: study using a dopamine agonist with a short half-life. Mov Disord 16: 301–305

    Article  PubMed  CAS  Google Scholar 

  • The Parkinson Study Group (1989) Effect of deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 321: 1364–1371

    Article  Google Scholar 

  • Uitti RJ, Ahlskog JE (1996) Comparative review of dopamine receptor agonists in Parkinson’s disease. CNS Drugs 5: 369–388

    Article  CAS  Google Scholar 

  • Vermeulen RJ, Drukarch B, Wolters EC, Stoof JC (1999) Dopamine D1 receptor agonists. CNS Drugs 11: 83–91

    Article  CAS  Google Scholar 

  • Vinar O, Zapletalek M, Kazdova E, Nahunek K, Molcan J (1985) Antidepressant effects of lisuride are not different from effects of amitriptyline and nortriptyline. Activ Nerv Sup (Praha) 27: 250–251

    Google Scholar 

  • Wachtel H (1999) Dopamin-Rezeptor-Agonisten: Apomorphin, Bromocriptin, Lisurid, Pergolid. In: Riederer P, Laux G, Pöldinger W (eds) Neuropsychopharmaka. Ein Therapie-Handbuch, Bd 5. Parkinsonmittel und Antidementiva, 2. Aufl. Springer, Wien New York, pp 201–225

    Chapter  Google Scholar 

  • Yoshikawa T, Minamiyama Y, Naito Y, Kondo M (1994) Antioxidant properties of bromocriptine, a dopamine agonist. J Neurochem 62: 1034–1038

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this paper

Cite this paper

Gerlach, M., Double, K., Reichmann, H., Riederer, P. (2003). Arguments for the use of dopamine receptor agonists in clinical and preclinical Parkinson’s disease. In: Horowski, R., et al. Advances in Research on Neurodegeneration. Journal of Neural Transmission. Supplementa, vol 65. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0643-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0643-3_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83907-2

  • Online ISBN: 978-3-7091-0643-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics