Skip to main content

Regulation of Apoptosis in Melanoma Cells: Targets for Therapeutic Strategies

  • Chapter
  • First Online:
Book cover Melanoma Development

Abstract

The pronounced therapy resistance of melanoma remains as an unsolved problem, and induction of apoptosis or sensitization for proapoptotic signals represent suitable targets. Extrinsic (death receptor-mediated) and intrinsic (mitochondria-mediated) proapoptotic pathways have been described, and the better understanding how proapoptotic pathways are blocked in melanoma may provide a basis for the development of new therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337

    Article  PubMed  CAS  Google Scholar 

  • Bedikian AY, Millward M, Pehamberger H, Conry R, Gore M, Trefzer U, Pavlick AC, DeConti R, Hersh EM, Hersey P, Kirkwood JM, Haluska FG (2006) Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J Clin Oncol 24:4738–4745

    Article  PubMed  CAS  Google Scholar 

  • Berger A, Quast SA, Plotz M, Hein M, Kunz M, Langer P, Eberle J (2011) Sensitization of melanoma cells for death ligand-induced apoptosis by an indirubin derivative – enhancement of both extrinsic and intrinsic apoptosis pathways. Biochem Pharmacol 81:71–81

    Google Scholar 

  • Chan CW, Housseau F (2008) The ‘kiss of death’ by dendritic cells to cancer cells. Cell Death Differ 15:58–69

    Article  PubMed  CAS  Google Scholar 

  • Chetoui N, Sylla K, Gagnon-Houde JV, Alcaide-Loridan C, Charron D, Al Daccak R, Aoudjit F (2008) Down-regulation of mcl-1 by small interfering RNA sensitizes resistant melanoma cells to fas-mediated apoptosis. Mol Cancer Res 6:42–52

    Article  PubMed  CAS  Google Scholar 

  • Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR (2010) The BCL-2 family reunion. Mol Cell 37:299–310

    Article  PubMed  CAS  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  PubMed  CAS  Google Scholar 

  • Dynek JN, Chan SM, Liu J, Zha J, Fairbrother WJ, Vucic D (2008) Microphthalmia-associated transcription factor is a critical transcriptional regulator of melanoma inhibitor of apoptosis in melanomas. Cancer Res 68:3124–3132

    Article  PubMed  CAS  Google Scholar 

  • Eberle J, Fecker LF, Hossini AM, Wieder T, Daniel PT, Orfanos CE, Geilen CC (2003) CD95/Fas signaling in human melanoma cells: conditional expression of CD95L/FasL overcomes the intrinsic apoptosis resistance of malignant melanoma and inhibits growth and progression of human melanoma xenotransplants. Oncogene 22:9131–9141

    Article  PubMed  CAS  Google Scholar 

  • Eberle J, Kurbanov BM, Hossini AM, Trefter U, Fecker LF (2007) Overcoming apoptosis deficiency of melanoma – hope for new therapeutic approaches. Drug Resist Updat 10:218–234

    Article  PubMed  CAS  Google Scholar 

  • Fang L, Lonsdorf AS, Hwang ST (2008) Immunotherapy for advanced melanoma. J Invest Dermatol 128:2596–2605

    Article  PubMed  CAS  Google Scholar 

  • Fecker LF, Geilen CC, Tchernev G, Trefzer U, Assaf C, Kurbanov BM, Schwarz C, Daniel PT, Eberle J (2006) Loss of proapoptotic Bcl-2-related multidomain proteins in primary melanomas is associated with poor prognosis. J Invest Dermatol 126:1366–1371

    Article  PubMed  CAS  Google Scholar 

  • Fecker LF, Ruckert S, Kurbanov BM, Schmude M, Stockfleth E, Fechner H, Eberle J (2011) Efficient melanoma cell killing and reduced melanoma growth in mice by a selective replicating adenovirus armed with TNF-related apoptosis inducing ligand. Hum Gene Ther 22: PMID 20977303

    Google Scholar 

  • Fecker LF, Schmude M, Jost S, Hossini AM, Pico AH, Wang X, Schwarz C, Fechner H, Eberle J (2010) Efficient and selective tumor cell lysis and induction of apoptosis in melanoma cells by a conditional replication-competent CD95L adenovirus. Exp Dermatol 19:e56–e66

    Article  PubMed  Google Scholar 

  • Fischer U, Janicke RU, Schulze-Osthoff K (2003) Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 10:76–100

    Article  PubMed  CAS  Google Scholar 

  • Fulda S, Debatin KM (2006) 5-Aza-2′-deoxycytidine and IFN-gamma cooperate to sensitize for TRAIL-induced apoptosis by upregulating caspase-8. Oncogene 25:5125–5133

    Article  PubMed  CAS  Google Scholar 

  • Garbe C, Peris K, Hauschild A, Saiag P, Middleton M, Spatz A, Grob JJ, Malvehy J, Newton-Bishop J, Stratigos A, Pehamberger H, Eggermont A (2010) Diagnosis and treatment of melanoma: European consensus-based interdisciplinary guideline. Eur J Cancer 46:270–283

    Article  PubMed  Google Scholar 

  • Geserick P, Drewniok C, Hupe M, Haas TL, Diessenbacher P, Sprick MR, Schon MP, Henkler F, Gollnick H, Walczak H, Leverkus M (2008) Suppression of cFLIP is sufficient to sensitize human melanoma cells to TRAIL- and CD95L-mediated apoptosis. Oncogene 27:3211–3220

    Article  PubMed  CAS  Google Scholar 

  • Guicciardi ME, Gores GJ (2009) Life and death by death receptors. FASEB J 23:1625–1637

    Article  PubMed  CAS  Google Scholar 

  • Hornle M, Peters N, Thayaparasingham B, Vorsmann H, Kashkar H, Kulms D (2011) Caspase-3 cleaves XIAP in a positive feedback loop to sensitize melanoma cells to TRAIL-induced apoptosis. Oncogene 30:575–87

    Google Scholar 

  • Hossini AM, Eberle J (2008) Apoptosis induction by Bcl-2 proteins independent of the BH3 domain. Biochem Pharmacol 76:1612–1619

    Article  PubMed  CAS  Google Scholar 

  • Inamdar GS, Madhunapantula SV, Robertson GP (2010) Targeting the MAPK pathway in melanoma: why some approaches succeed and other fail. Biochem Pharmacol 80:624–637

    Article  PubMed  CAS  Google Scholar 

  • Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388:190–195

    Article  PubMed  CAS  Google Scholar 

  • Ivanov VN, Partridge MA, Johnson GE, Huang SX, Zhou H, Hei TK (2008) Resveratrol sensitizes melanomas to TRAIL through modulation of antiapoptotic gene expression. Exp Cell Res 314:1163–1176

    Article  PubMed  CAS  Google Scholar 

  • Jiang CC, Wroblewski D, Yang F, Hersey P, Zhang XD (2009) Human melanoma cells under endoplasmic reticulum stress are more susceptible to apoptosis induced by the BH3 mimetic obatoclax. Neoplasia 11:945–955

    PubMed  CAS  Google Scholar 

  • Kaminski R, Kozar K, Niderla J, Grzela T, Wilczynski G, Skierski JS, Koronkiewicz M, Jakobisiak M, Golab J (2004) Demethylating agent 5-aza-2′-deoxycytidine enhances expression of TNFRI and promotes TNF-mediated apoptosis in vitro and in vivo. Oncol Rep 12:509–516

    PubMed  CAS  Google Scholar 

  • Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436

    Article  PubMed  CAS  Google Scholar 

  • Kelley SK, Ashkenazi A (2004) Targeting death receptors in cancer with Apo2L/TRAIL. Curr Opin Pharmacol 4:333–339

    Article  PubMed  CAS  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  PubMed  CAS  Google Scholar 

  • Keuling AM, Felton KE, Parker AA, Akbari M, Andrew SE, Tron VA (2009) RNA silencing of Mcl-1 enhances ABT-737-mediated apoptosis in melanoma: role for a caspase-8-dependent pathway. PLoS ONE 4:e6651

    Article  PubMed  Google Scholar 

  • Korsmeyer SJ (1999) BCL-2 gene family and the regulation of programmed cell death. Cancer Res 59:1693s–1700s

    PubMed  CAS  Google Scholar 

  • Kurbanov BM, Fecker LF, Geilen CC, Sterry W, Eberle J (2007) Resistance of melanoma cells to TRAIL does not result from upregulation of antiapoptotic proteins by NF-kappaB but is related to downregulation of initiator caspases and DR4. Oncogene 26:3364–3377

    Article  PubMed  CAS  Google Scholar 

  • Kurbanov BM, Geilen CC, Fecker LF, Orfanos CE, Eberle J (2005) Efficient TRAIL-R1/DR4-mediated apoptosis in melanoma cells by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Invest Dermatol 125:1010–1019

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Yang Q, Wilder PT, Carrier F, Weber DJ (2010) The calcium-binding protein S100B down-regulates p53 and apoptosis in malignant melanoma. J Biol Chem 285:27487–27498

    Article  PubMed  CAS  Google Scholar 

  • Lindsten T, Ross AJ, King A, Zong WX, Rathmell JC, Shiels HA, Ulrich E, Waymire KG, Mahar P, Frauwirth K, Chen Y, Wei M, Eng VM, Adelman DM, Simon MC, Ma A, Golden JA, Evan G, Korsmeyer SJ, MacGregor GR, Thompson CB (2000) The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6:1389–1399

    Article  PubMed  CAS  Google Scholar 

  • Miller LA, Goldstein NB, Johannes WU, Walton CH, Fujita M, Norris DA, Shellman YG (2009) BH3 mimetic ABT-737 and a proteasome inhibitor synergistically kill melanomas through Noxa-dependent apoptosis. J Invest Dermatol 129:964–971

    Article  PubMed  CAS  Google Scholar 

  • Nachmias B, Ashhab Y, Ben Yehuda D (2004) The inhibitor of apoptosis protein family (IAPs): an emerging therapeutic target in cancer. Semin Cancer Biol 14:231–243

    Article  PubMed  CAS  Google Scholar 

  • Newsom-Davis T, Prieske S, Walczak H (2009) Is TRAIL the holy grail of cancer therapy? Apoptosis 14:607–623

    Article  PubMed  CAS  Google Scholar 

  • Niessner H, Beck D, Sinnberg T, Lasithiotakis K, Maczey E, Gogel J, Venturelli S, Berger A, Mauthe M, Toulany M, Flaherty K, Schaller M, Schadendorf D, Proikas-Cezanne T, Schittek B, Garbe C, Kulms D, Meier F (2011) The farnesyl transferase inhibitor lonafarnib inhibits mTOR signaling and enforces sorafenib-induced apoptosis in melanoma cells. J Invest Dermatol 131:468–79

    Google Scholar 

  • Plantivaux A, Szegezdi E, Samali A, Egan L (2009) Is there a role for nuclear factor kappaB in tumor necrosis factor-related apoptosis-inducing ligand resistance? Ann NY Acad Sci 1171:38–49

    Article  PubMed  CAS  Google Scholar 

  • Pop C, Salvesen GS (2009) Human caspases: activation, specificity, and regulation. J Biol Chem 284:21777–21781

    Article  PubMed  CAS  Google Scholar 

  • Robertson GP (2005) Functional and therapeutic significance of Akt deregulation in malignant melanoma. Cancer Metastasis Rev 24:273–285

    Article  PubMed  CAS  Google Scholar 

  • Satyamoorthy K, Chehab NH, Waterman MJ, Lien MC, El Deiry WS, Herlyn M, Halazonetis TD (2000) Aberrant regulation and function of wild-type p53 in radioresistant melanoma cells. Cell Growth Differ 11:467–474

    PubMed  CAS  Google Scholar 

  • She QB, Solit DB, Ye Q, O’Reilly KE, Lobo J, Rosen N (2005) The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell 8:287–297

    Article  PubMed  CAS  Google Scholar 

  • Shelley MD, Hartley L, Fish RG, Groundwater P, Morgan JJG, Mort D, Mason M, Evans A (1999) Stereo-specific cytotoxic effects of gossypol enantiomers and gossypolone in tumour cell lines. Cancer Lett 135:171–180

    Article  Google Scholar 

  • Singh TR, Shankar S, Chen X, Asim M, Srivastava RK (2003) Synergistic interactions of chemotherapeutic drugs and tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand on apoptosis and on regression of breast carcinoma in vivo. Cancer Res 63:5390–5400

    PubMed  CAS  Google Scholar 

  • Sinnberg T, Lasithiotakis K, Niessner H, Schittek B, Flaherty KT, Kulms D, Maczey E, Campos M, Gogel J, Garbe C, Meier F (2009) Inhibition of PI3K-AKT-mTOR signaling sensitizes melanoma cells to cisplatin and temozolomide. J Invest Dermatol 129:1500–1515

    Article  PubMed  CAS  Google Scholar 

  • Smalley KSM, Contractor R, Haass NK, Kulp AN, Atilla-Gokcumen GE, Williams DS, Bregman H, Flaherty KT, Soengas MS, Meggers E, Herlyn M (2007) An organometallic protein kinase inhibitor pharmacologically activates p53 and induces apoptosis in human melanoma cells. Cancer Res 67:209–217

    Article  PubMed  CAS  Google Scholar 

  • Stiles BL (2009) PI-3-K and AKT: onto the mitochondria. Adv Drug Deliv Rev 61:1276–1282

    Article  PubMed  CAS  Google Scholar 

  • Su Y, Amiri KI, Horton LW, Yu Y, Ayers GD, Koehler E, Kelley MC, Puzanov I, Richmond A, Sosman JA (2010) A phase I trial of bortezomib with temozolomide in patients with advanced melanoma: toxicities, antitumor effects, and modulation of therapeutic targets. Clin Cancer Res 16:348–357

    Article  PubMed  CAS  Google Scholar 

  • Sun BS, Wang JH, Liu LL, Gong SL, Redmond HP (2007) Taurolidine induces apoptosis of murine melanoma cells in vitro and in vivo by modulation of the Bcl-2 family proteins. J Surg Oncol 96(3):241–248

    Article  PubMed  CAS  Google Scholar 

  • Thomas WD, Hersey P (1998) TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in Fas ligand-resistant melanoma cells and mediates CD4 T cell killing of target cells. J Immunol 161:2195–2200

    PubMed  CAS  Google Scholar 

  • Trarbach T, Moehler M, Heinemann V, Kohne CH, Przyborek M, Schulz C, Sneller V, Gallant G, Kanzler S (2010) Phase II trial of mapatumumab, a fully human agonistic monoclonal antibody that targets and activates the tumour necrosis factor apoptosis-inducing ligand receptor-1 (TRAIL-R1), in patients with refractory colorectal cancer. Br J Cancer 102:506–512

    Article  PubMed  CAS  Google Scholar 

  • Trauth BC, Klas C, Peters AM, Matzku S, Moller P, Falk W, Debatin KM, Krammer PH (1989) Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245:301–305

    Article  PubMed  CAS  Google Scholar 

  • VanBrocklin MW, Verhaegen M, Soengas MS, Holmen SL (2009) Mitogen-activated protein kinase inhibition induces translocation of Bmf to promote apoptosis in melanoma. Cancer Res 69:1985–1994

    Article  PubMed  CAS  Google Scholar 

  • Verhaegen M, Bauer JA, de la Vega CM, Wang G, Wolter KG, Brenner JC, Nikolovska-Coleska Z, Bengtson A, Nair R, Elder JT, Van BM, Carey TE, Bradford CR, Wang S, Soengas MS (2006) A novel BH3 mimetic reveals a mitogen-activated protein kinase-dependent mechanism of melanoma cell death controlled by p53 and reactive oxygen species. Cancer Res 66:11348–11359

    Article  PubMed  CAS  Google Scholar 

  • Wagner KW, Punnoose EA, Januario T, Lawrence DA, Pitti RM, Lancaster K, Lee D, von Goetz M, Yee SF, Totpal K, Huw L, Katta V, Cavet G, Hymowitz SG, Amler L, Ashkenazi A (2007) Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat Med 13:1070–1077

    Article  PubMed  CAS  Google Scholar 

  • Wang YF, Jiang CF, Kiejda KF, Gillespie SF, Zhang XF, Hersey P (2007) Apoptosis induction in human melanoma cells by inhibition of MEK is caspase-independent and mediated by the Bcl-2 family members PUMA, Bim, and Mcl-1. Clin Cancer Res 13:4934–4942

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Thomas J, Liu T, Raj D, London N, Tandeski T, Leachman SA, Lee RM, Grossman D (2006) Induction of melanoma cell apoptosis and inhibition of tumor growth using a cell-permeable Survivin antagonist. Oncogene 25:6968–6974

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Tay KH, Dong L, Thorne RF, Jiang CC, Yang E, Tseng HY, Liu H, Christopherson R, Hersey P, Zhang XD (2010) Cystatin B inhibition of TRAIL-induced apoptosis is associated with the protection of FLIP(L) from degradation by the E3 ligase itch in human melanoma cells. Cell Death Differ 17:1354–1367

    Article  PubMed  CAS  Google Scholar 

  • Yang JM, Pan WH, Clawson GA, Richmond A (2007) Systemic targeting inhibitor of kappa B kinase inhibits melanoma tumor growth. Cancer Res 67:3127–3134

    Article  PubMed  CAS  Google Scholar 

  • Zhuang L, Lee CS, Scolyer RA, McCarthy SW, Zhang XD, Thompson JF, Hersey P (2007) Mcl-1, Bcl-XL and Stat3 expression are associated with progression of melanoma whereas Bcl-2, AP-2 and MITF levels decrease during progression of melanoma. Mod Pathol 20:416–426

    Article  PubMed  CAS  Google Scholar 

  • Zuckerman V, Wolyniec K, Sionov RV, Haupt S, Haupt Y (2009) Tumour suppression by p53: the importance of apoptosis and cellular senescence. J Pathol 219:3–15

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Eberle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Eberle, J., Fecker, L.F. (2011). Regulation of Apoptosis in Melanoma Cells: Targets for Therapeutic Strategies. In: Bosserhoff, A. (eds) Melanoma Development. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0371-5_10

Download citation

Publish with us

Policies and ethics