Skip to main content

Nitric Oxide in Early Brain Injury After Subarachnoid Hemorrhage

  • Conference paper
Early Brain Injury or Cerebral Vasospasm

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 110/1))

Abstract

Nitric Oxide (NO) is the major regulator of cerebral blood flow. In addition, it inhibits platelet adherence and aggregation, reduces adherence of leukocytes to the endothelium, and suppresses vessel injury. NO is produced on demand by nitric oxide synthase and has a very short half life. Hence maintenance of its cerebral level is crucial for normal vascular physiology. Time dependent alterations in cerebral NO level and the enzymes responsible for its synthesis are found after subarachnoid hemorrhage (SAH). Cerebral NO level decreases, recovers and increases within the first 24h after SAH. Each change in cerebral NO level elicits a different pathological response form already compromised brain. These response range from constriction, platelet aggregation and vascular injury that occurs during the early hours and delayed occurring vasospasm, neuronal and axonal damage. This review summarizes the underlying mechanism and the consequence of alteration in cerebral NO level on brain during the first 72h after SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bederson JB, Levy AL, Ding WH, Kahn R, DiPerna CA, Jenkins AL 3rd, Vallabhajosyula P. Acute vasoconstriction after subarachnoid hemorrhage. Neurosurgery. 1998;42:352–60.

    Article  PubMed  CAS  Google Scholar 

  2. Gewirtz RJ, Dhillon HS, Goes SE, DeAtley SM, Scheff SW. Lactate and free fatty acids after subarachnoid hemorrhage. Brain Res. 1999;840:84–91.

    Article  PubMed  CAS  Google Scholar 

  3. Stoltenburg-Didinger G, Schwartz K. Brain lesions secondary to subarachnoid hemorrhage due to ruptured aneurysms. In: Cervos-Navarro J, Ferst R, editors. Stroke and microcirculation. New York: Raven Press; 1987. p. 471–80.

    Google Scholar 

  4. Fisher CM. Clinical syndromes in cerebral thrombosis, hypertensive hemorrhage, and ruptured saccular aneurysm. Clin Neurosurg. 1975;22:117–47.

    PubMed  CAS  Google Scholar 

  5. Nornes H. The role of intracranial pressure in the arrest of hemorrhage in patients with ruptured intracranial aneurysm. J Neurosurg. 1973;39:226–34.

    Article  PubMed  CAS  Google Scholar 

  6. Nornes H. Cerebral arterial flow dynamics during aneurysm haemorrhage. Acta Neurochir. 1978;41:39–48.

    Article  PubMed  CAS  Google Scholar 

  7. Guan YY, Weir BK, Marton LS, Macdonald RL, Zhang H. Effects of erythrocyte lysate of different incubation times on intracellular free calcium in rat basilar artery smooth-muscle cells. J Neurosurg. 1998;89:1007–14.

    Article  PubMed  CAS  Google Scholar 

  8. Clower BR, Yoshioka J, Honma T, Smith R. Blood platelets and early intimal changes in cerebral arteries following experimental subarachnoid hemorrhage. In: Wilkins RL, editor. Cerebral vasospasm. New York: Ravens Press; 1988. p. 335–41.

    Google Scholar 

  9. Schumacher MA, Alksne JF. Mechanisms of whole blood-induced cerebral arterial contraction. Neurosurgery 1981;9:275–82.

    Article  PubMed  CAS  Google Scholar 

  10. Hall ED, Travis MA. Effects of the nonglucocorticoid 21-aminosteroid U74006F on acute cerebral hypoperfusion following experimental subarachnoid hemorrhage. Exp Neurol. 1988;102:244–48.

    Article  PubMed  CAS  Google Scholar 

  11. Travis MA, Hall ED. The effects of chronic two-fold dietary vitamin E supplementation on subarachnoid hemorrhage-induced brain hypoperfusion. Brain Res. 1987;418:366–70.

    Article  PubMed  CAS  Google Scholar 

  12. Furuichi S, Endo S, Haji A, Takeda R, Nisijima M, Takaku A. Related changes in sympathetic activity, cerebral blood flow and intracranial pressure, and effect of an alpha-blocker in experimental subarachnoid haemorrhage. Acta Neurochir. 1999;141:415–23.

    Article  PubMed  CAS  Google Scholar 

  13. Schwartz AY, Sehba FA, Bederson JB. Decreased nitric oxide availability contributes to acute cerebral ischemia after subarachnoid hemorrhage. Neurosurgery 2000;47:208–14; discussion 214–205.

    PubMed  CAS  Google Scholar 

  14. Sehba FA, Ding WH, Chereshnev I, Bederson JB. Effects of S-nitrosoglutathione on acute vasoconstriction and glutamate release after subarachnoid hemorrhage. Stroke 1999;30:1955–61.

    Article  PubMed  CAS  Google Scholar 

  15. Sehba FA, Schwartz AY, Chereshnev I, Bederson JB. Acute decrease in cerebral nitric oxide levels after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2000;20:604–11.

    Article  PubMed  CAS  Google Scholar 

  16. Knight JA. Review: Free radicals, antioxidants, and the immune system. Ann Clin Lab Sci. 2000;30:145–58.

    PubMed  CAS  Google Scholar 

  17. Rubbo H, Darley-Usmar V, Freeman BA. Nitric oxide regulation of tissue free radical injury. Chem Res Toxicol. 1996;9:809–20.

    Article  PubMed  CAS  Google Scholar 

  18. Szabo C. Physiological and pathophysiological roles of nitric oxide in the central nervous system. Brain Res Bull. 1996;41:131–41.

    PubMed  CAS  Google Scholar 

  19. Troncy E, Francoeur M, Blaise G. Inhaled nitric oxide: clinical applications, indications, and toxicology. Can J Anaesth. 1997;44:973–88.

    Article  PubMed  CAS  Google Scholar 

  20. Watkins LD. Nitric oxide and cerebral blood flow: an update. Cerebrovasc Brain Metab Rev. 1995;7:324–37.

    PubMed  CAS  Google Scholar 

  21. Yun HY, Dawson VL, Dawson TM. Neurobiology of nitric oxide. Crit Rev Neurobiol. 1996;10:291–316.

    Article  PubMed  CAS  Google Scholar 

  22. Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 1988;333:664–66.

    Article  PubMed  CAS  Google Scholar 

  23. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987;327:524–26.

    Article  PubMed  CAS  Google Scholar 

  24. Nathan C, Xie QW. Nitric oxide synthases: roles, tolls, and controls. Cell 1994;78:915–18.

    Article  PubMed  CAS  Google Scholar 

  25. Cooke JP, Dzau VJ. Nitric oxide synthase: role in the genesis of vascular disease. Annu Rev Med. 1997;48:489–509.

    Article  PubMed  CAS  Google Scholar 

  26. Iadecola C. Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci. 1997;20:132–39.

    Article  PubMed  CAS  Google Scholar 

  27. Kader A, Frazzini VI, Solomon RA, Trifiletti RR. Nitric oxide production during focal cerebral ischemia in rats. Stroke 1993;24:1709–16.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang ZG, Chopp M, Gautam S, Zaloga C, Zhang RL, Schmidt HH, et al. Upregulation of neuronal nitric oxide synthase and mRNA, and selective sparing of nitric oxide synthase-containing neurons after focal cerebral ischemia in rat. Brain Res. 1994;654:85–95.

    Article  PubMed  CAS  Google Scholar 

  29. Iadecola C, Zhang F, Casey R, Clark HB, Ross ME. Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia. Stroke 1996;27:1373–80.

    Article  PubMed  CAS  Google Scholar 

  30. Iadecola C, Zhang F, Xu S, Casey R, Ross ME. Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. J Cereb Blood Flow Metab. 1995;15:378–84.

    Article  PubMed  CAS  Google Scholar 

  31. Bolanos JP, Almeida A. Roles of nitric oxide in brain hypoxia-ischemia. Biochim Biophys Acta. 1999;1411:415–36.

    Article  PubMed  CAS  Google Scholar 

  32. Daughters K, Waxman K, Nguyen H. Increasing nitric oxide production improves survival in experimental hemorrhagic shock. Resuscitation 1996;31:141–44.

    Article  PubMed  CAS  Google Scholar 

  33. Kosaka H. Nitric oxide and hemoglobin interactions in the vasculature. Biochim Biophys Acta. 1999;1411:370–77.

    Article  PubMed  CAS  Google Scholar 

  34. Afshar JK, Pluta RM, Boock RJ, Thompson BG, Oldfield EH. Effect of intracarotid nitric oxide on primate cerebral vasospasm after subarachnoid hemorrhage. J Neurosurg. 1995;83:118–22.

    Article  PubMed  CAS  Google Scholar 

  35. Durmaz R, Ozkara E, Kanbak G, Arslan O, Dokumacioğlu A, Kartkaya K, et al. Nitric oxide level and adenosine deaminase activity in cerebrospinal fluid of patients with subarachnoid hemorrhage. Turk Neurosurg. 2008;18:157–64.

    PubMed  Google Scholar 

  36. Edwards DH, Byrne JV, Griffith TM. The effect of chronic subarachnoid hemorrhage on basal endothelium-derived relaxing factor activity in intrathecal cerebral arteries. J Neurosurg. 1992;76:830–37.

    Article  PubMed  CAS  Google Scholar 

  37. Khaldi A, Zauner A, Reinert M, Woodward JJ, Bullock MR. Measurement of nitric oxide and brain tissue oxygen tension in patients after severe subarachnoid hemorrhage. Neurosurgery 2001;49:33–8; discussion 38–40.

    PubMed  CAS  Google Scholar 

  38. Ng WH, Moochhala S, Yeo TT, Ong PL, Ng PY. Nitric oxide and subarachnoid hemorrhage: elevated level in cerebrospinal fluid and their implications. Neurosurgery 2001;49:622–26; discussion 626–627.

    PubMed  CAS  Google Scholar 

  39. Pluta RM, Oldfield EH, Boock RJ. Reversal and prevention of cerebral vasospasm by intracarotid infusions of nitric oxide donors in a primate model of subarachnoid hemorrhage. J Neurosurg. 1997;87:746–51.

    Article  PubMed  CAS  Google Scholar 

  40. Suzuki Y, Kajita Y, Oyama H, Tanazawa T, Takayasu M, Shibuya M, et al. Dysfunction of nitric oxide in the spastic basilar arteries after subarachnoid hemorrhage. J Auton Nerv Syst. 1994;49 Suppl:S83–7.

    Article  PubMed  CAS  Google Scholar 

  41. Woszczyk A, Deinsberger W, Boker DK. Nitric oxide metabolites in cisternal CSF correlate with cerebral vasospasm in patients with a subarachnoid haemorrhage. Acta Neurochir (Wien). 2003;145:257–64.

    Article  CAS  Google Scholar 

  42. Sehba FA, Bederson JB. Mechanisms of acute brain injury after subarachnoid hemorrhage. Neurol Res. 2006;28:381–98.

    Article  PubMed  CAS  Google Scholar 

  43. Higuchi Y, Hattori H, Hattori R, Furusho K. Increased neurons containing neuronal nitric oxide synthase in the brain of a hypoxic-ischemic neonatal rat model. Brain Dev. 1996;18:369–75.

    Article  PubMed  CAS  Google Scholar 

  44. Kumura E, Kosaka H, Shiga T, Yoshimine T, Hayakawa T. Elevation of plasma nitric oxide end products during focal ischemia and reperfusion in the rat. J Cereb Blood Flow Meteb. 1994;14:487–91.

    Article  CAS  Google Scholar 

  45. Malinski T, Bailey F, Zhang ZG, Chopp M. Nitric oxide measured by a porphyrinic microsensor in rat brain after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab. 1993;13:355–58.

    Article  PubMed  CAS  Google Scholar 

  46. Shibata M, Araki N, Hamada J, Sasaki T, Shimazu K, Fukuuchi Y. Brain nitrite production during global ischemia and reperfusion: an in vivo microdialysis study. Brain Res. 1996;734:86–90.

    Article  PubMed  CAS  Google Scholar 

  47. Zhang ZG, Chopp M, Bailey F, Malinski T. Nitric oxide changes in the rat brain after transient middle cerebral artery occlusion. J Neurol Sci. 1995;128:22–7.

    Article  PubMed  CAS  Google Scholar 

  48. Kajita Y, Suzuki Y, Oyama H, Tanazawa T, Takayasu M, Shibuya M, Sugita K. Combined effect of L-arginine and superoxide dismutase on the spastic basilar artery after subarachnoid hemorrhage in dogs. J Neurosurg. 1994;80:476–83.

    Article  PubMed  CAS  Google Scholar 

  49. Sobey CG, Faraci FM. Subarachnoid haemorrhage: what happens to the cerebral arteries? Clin Exp Pharmacol Physiol. 1998;25:867–76.

    Article  PubMed  CAS  Google Scholar 

  50. Provencio JJ, Vora N. Subarachnoid hemorrhage and inflammation: bench to bedside and back. Semin Neurol. 2005;25:435–44.

    Article  PubMed  Google Scholar 

  51. Sehba FA, Chereshnev I, Maayani S, Friedrich V, Jr., Bederson JB. Nitric oxide synthase in acute alteration of Nitric oxide levels after subarachnoid hemorrhage. Neurosurgery 2004;55:671–77; discussion 677–678.

    Article  PubMed  Google Scholar 

  52. Pluta RM. Dysfunction of nitric oxide synthases as a cause and therapeutic target in delayed cerebral vasospasm after SAH. Acta Neurochir Suppl. 2008;104:139–47.

    Article  PubMed  CAS  Google Scholar 

  53. Park KW, Metais C, Dai HB, Comunale ME, Sellke FW. Microvascular endothelial dysfunction and its mechanism in a rat model of subarachnoid hemorrhage. Anesth Analg. 2001;92:990–96.

    Article  PubMed  CAS  Google Scholar 

  54. Sehba FA, Flores R, Muller A, Friedrich V, Bederson JB. Early decrease in cerebral endothelial nitric oxide synthase occurs after subarachnoid hemorrhage. Annu Stroke Conf. 2007;172:P527.

    Google Scholar 

  55. Sehba FA, Mustafa G, Friedrich V, Bederson JB. Acute microvascular platelet aggregation after subarachnoid hemorrhage. J Neurosurg. 2005;102:1094–100.

    Article  PubMed  Google Scholar 

  56. McGirt MJ, Pradilla G, Legnani FG, Thai QA, Recinos PF, Tamargo RJ, et al. Systemic administration of simvastatin after the onset of experimental subarachnoid hemorrhage attenuates cerebral vasospasm. Neurosurgery 2006;58:945–51; discussion 945–951.

    Article  PubMed  Google Scholar 

  57. Sugawara T, Ayer R, Jadhav V, Chen W, Tsubokawa T, Zhang JH. Simvastatin attenuation of cerebral vasospasm after subarachnoid hemorrhage in rats via increased phosphorylation of Akt and endothelial nitric oxide synthase. J Neurosci Res. 2008;86:3635–43.

    Article  PubMed  CAS  Google Scholar 

  58. Kern M, Lam MM, Knuckey NW, Lind CR. Statins may not protect against vasospasm in subarachnoid haemorrhage. J Clin Neurosci. 2009;16:527–30.

    Article  PubMed  CAS  Google Scholar 

  59. McGirt MJ, Garces Ambrossi GL, Huang J, Tamargo RJ. Simvastatin for the prevention of symptomatic cerebral vasospasm following aneurysmal subarachnoid hemorrhage: a single-institution prospective cohort study. J Neurosurg. 2009;110:968–74.

    Article  PubMed  Google Scholar 

  60. Sehba FA, Makonnen G, Friedrich V, Bederson JB. Acute cerebral vascular injury occurs after subarachnoid hemorrhage and can be prevented by administration of a nitric oxide donor. J Neurosurg. 2007;106:321–29.

    Article  PubMed  CAS  Google Scholar 

  61. Sun BL, Zheng CB, Yang MF, Yuan H, Zhang SM, Wang LX. Dynamic alterations of cerebral pial microcirculation during experimental subarachnoid hemorrhage. Cell Mol Neurobiol. 2009;29:235–41.

    Article  PubMed  Google Scholar 

  62. Asano T, Sano K. Pathogenetic role of no-reflow phenomenon in experimental subarachnoid hemorrhage in dogs. J Neurosurg. 1977;46:454–66.

    Article  PubMed  CAS  Google Scholar 

  63. Clower BR, Yoshioka J, Honma Y, Smith RR. Pathological changes in cerebral arteries following experimental subarachnoid hemorrhage: role of blood platelets. Anat Rec. 1988;220:161–70.

    Article  PubMed  CAS  Google Scholar 

  64. Schubert GA, Schilling L, Thome C. Clazosentan, an endothelin receptor antagonist, prevents early hypoperfusion during the acute phase of massive experimental subarachnoid hemorrhage: a laser Doppler flowmetry study in rats. J Neurosurg. 2008;109:1134–40.

    Article  PubMed  CAS  Google Scholar 

  65. Yatsushige H, Calvert JW, Cahill J, Zhang JH. Limited role of inducible nitric oxide synthase in blood-brain barrier function after experimental subarachnoid hemorrhage. J Neurotrauma. 2006;23:1874–82.

    Article  PubMed  Google Scholar 

  66. Suzuki M, Asahara H, Endo S, Inada K, Doi M, Kuroda K, et al. Increased levels of nitrite/nitrate in the cerebrospinal fluid of patients with subarachnoid hemorrhage. Neurosurg Rev. 1999;22:96–8.

    Article  PubMed  CAS  Google Scholar 

  67. Jung CS, Iuliano BA, Harvey-White J, Espey MG, Oldfield EH, Pluta RM. Association between cerebrospinal fluid levels of asymmetric dimethyl-L-arginine, an endogenous inhibitor of endothelial nitric oxide synthase, and cerebral vasospasm in a primate model of subarachnoid hemorrhage. J Neurosurg. 2004;101:836–42.

    Article  PubMed  CAS  Google Scholar 

  68. Seidel B, Stanarius A, Wolf G. Differential expression of neuronal and endothelial nitric oxide synthase in blood vessels of the rat brain. Neurosci Lett. 1997;239:109–12.

    Article  PubMed  CAS  Google Scholar 

  69. Vikman P, Beg S, Khurana TS, Hansen-Schwartz J, Edvinsson L. Gene expression and molecular changes in cerebral arteries following subarachnoid hemorrhage in the rat. J Neurosurg. 2006;105:438–44.

    Article  PubMed  CAS  Google Scholar 

  70. Yamamoto S, Nishizawa S, Yokoyama T, Ryu H, Uemura K. Subarachnoid hemorrhage impairs cerebral blood flow response to nitric oxide but not to cyclic GMP in large cerebral arteries. Brain Res. 1997;757:1–9.

    Article  PubMed  CAS  Google Scholar 

  71. Ayer RE, Zhang JH. Oxidative stress in subarachnoid haemorrhage: significance in acute brain injury and vasospasm. Acta Neurochir Suppl. 2008;104:33–41.

    Article  PubMed  CAS  Google Scholar 

  72. Petzold A, Rejdak K, Belli A, Sen J, Keir G, Kitchen N, et al. Axonal pathology in subarachnoid and intracerebral hemorrhage. J Neurotrauma. 2005;22:407–14.

    Article  PubMed  CAS  Google Scholar 

  73. Eliasson MJ, Huang Z, Ferrante RJ, Sasamata M, Molliver ME, Snyder SH, Moskowitz MA. Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. J Neurosci. 1999;19:5910–918.

    PubMed  CAS  Google Scholar 

  74. Forman LJ, Liu P, Nagele RG, Yin K, Wong PY. Augmentation of nitric oxide, superoxide, and peroxynitrite production during cerebral ischemia and reperfusion in the rat. Neurochem Res. 1998;23:141–48.

    Article  PubMed  CAS  Google Scholar 

  75. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA. 1990;87:1620–24.

    Article  PubMed  CAS  Google Scholar 

  76. Leist M, Nicotera P. Apoptosis, excitotoxicity, and neuropathology. Exp Cell Res. 1998;239:183–201.

    Article  PubMed  CAS  Google Scholar 

  77. Pluta RM, Thompson BG, Dawson TM, Snyder SH, Boock RJ, Oldfield EH. Loss of nitric oxide synthase immunoreactivity in cerebral vasospasm. J Neurosurg. 1996;84:648–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima A. Sehba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this paper

Cite this paper

Sehba, F.A., Bederson, J.B. (2011). Nitric Oxide in Early Brain Injury After Subarachnoid Hemorrhage. In: Feng, H., Mao, Y., Zhang, J.H. (eds) Early Brain Injury or Cerebral Vasospasm. Acta Neurochirurgica Supplements, vol 110/1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0353-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0353-1_18

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0352-4

  • Online ISBN: 978-3-7091-0353-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics