Skip to main content

Mediators of Vascular Inflammation

  • Chapter
  • First Online:
  • 2006 Accesses

Abstract

Inflammation is a basic pathological mechanism that underlies a variety of diseases. The inflammatory reaction involves the complex interactions between inflammatory cells (neutrophils, lymphocytes and monocytes/macrophages) and vascular cells (endothelial [EC] and smooth muscle cells [SMC]). The role of vascular cells during the inflammatory process is critical. Multiple cytokines and growth factors are present at sites of inflammation, and each of these can potentially influence the nature of the inflammatory response [1]. EC and SMC must integrate the signals generated by these multiple factors to effectively regulate the immuno-inflammatory response through the expression of adhesion molecules, cytokines, chemokines, matrix metalloproteinases (MMPs) and growth factors. Research in vascular biology has progressed remarkably in the last decade, resulting in a better understanding of the vascular cell responses to inflammatory stimuli, as well as in the identification of the major intracellular inflammatory signaling pathways, NF-κB, AP-1 and JAK/STAT. Much recent works show that vascular inflammation can be limited by anti-inflammatory counter regulatory mechanisms that maintain the integrity and homeostasis of the vascular wall. This might be of particular importance in inflammatory diseases such as atherosclerosis, aneurysm, septic shock or ischemia/reperfusion. Critically situated at the boundary between blood and tissues, the endothelium is a focus for inflammatory processes. EC receive signals from humoral factors, inflammatory mediators, and physical forces from both the circulation and the tissue. A number of potential triggers capable of inducing proinflammatory and prothrombotic cellular responses have been identified; these include modified lipoproteins, proinflammatory cytokines, chemokines, vasoactive peptides (angiotensin II, endothelin), neuropeptides (substance P), hyperglycemia and advanced glycosylated end products (AGE), smoking, oxidative stress [2]. SMC also are targets of these triggers. The purpose of the present review is to describe recent advances in the understanding of the mechanisms of vascular inflammation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tedgui A, Mallat Z (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 86:515–581

    Article  PubMed  CAS  Google Scholar 

  2. Tedgui A, Mallat Z (2001) Anti-inflammatory mechanisms in the vascular wall. Circ Res 88:877–887

    Article  PubMed  CAS  Google Scholar 

  3. Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362

    Article  PubMed  CAS  Google Scholar 

  4. Pantano C, Reynaert NL, van der Vliet A, Janssen-Heininger YM (2006) Redox-sensitive kinases of the nuclear factor-kappaB signaling pathway. Antioxid Redox Signal 8:1791–1806

    Article  PubMed  CAS  Google Scholar 

  5. Ferran C (2006) Protective genes in the vessel wall: modulators of graft survival and function. Transplantation 82:S36–S40

    Article  PubMed  CAS  Google Scholar 

  6. Durante W (2010) Targeting heme oxygenase-1 in vascular disease. Curr Drug Targets 11:1504–1516

    PubMed  CAS  Google Scholar 

  7. Yachie A, Niida Y, Wada T, Igarashi N, Kaneda H, Toma T et al (1999) Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest 103:129–135

    Article  PubMed  CAS  Google Scholar 

  8. Potteaux S, Deleuze V, Merval R, Bureau MF, Esposito B, Scherman D et al (2006) In vivo electrotransfer of interleukin-10 cDNA prevents endothelial upregulation of activated NF-kappaB and adhesion molecules following an atherogenic diet. Eur Cytokine Netw 17:13–18

    PubMed  CAS  Google Scholar 

  9. Kanters E, Pasparakis M, Gijbels MJ, Vergouwe MN, Partouns-Hendriks I, Fijneman RJ et al (2003) Inhibition of NF-kappaB activation in macrophages increases atherosclerosis in LDL receptor-deficient mice. J Clin Invest 112:1176–1185

    PubMed  CAS  Google Scholar 

  10. Lawrence T, Gilroy DW, Colville-Nash PR, Willoughby DA (2001) Possible new role for NF-kappaB in the resolution of inflammation. Nat Med 7:1291–1297

    Article  PubMed  CAS  Google Scholar 

  11. Gareus R, Kotsaki E, Xanthoulea S, van der Made I, Gijbels MJ, Kardakaris R et al (2008) Endothelial cell-specific NF-kappaB inhibition protects mice from atherosclerosis. Cell Metab 8:372–383

    Article  PubMed  CAS  Google Scholar 

  12. Vesely PW, Staber PB, Hoefler G, Kenner L (2009) Translational regulation mechanisms of AP-1 proteins. Mutat Res 682:7–12

    Article  PubMed  CAS  Google Scholar 

  13. Tournier C, Dong C, Turner TK, Jones SN, Flavell RA, Davis RJ (2001) MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes Dev 15:1419–1426

    Article  PubMed  CAS  Google Scholar 

  14. Murray PJ (2007) The JAK-STAT signaling pathway: input and output integration. J Immunol 178:2623–2629

    PubMed  CAS  Google Scholar 

  15. Welte T, Zhang SS, Wang T, Zhang Z, Hesslein DG, Yin Z et al (2003) STAT3 deletion during hematopoiesis causes Crohn’s disease-like pathogenesis and lethality: a critical role of STAT3 in innate immunity. Proc Natl Acad Sci USA 100:1879–1884

    Article  PubMed  CAS  Google Scholar 

  16. Takeda K, Clausen BE, Kaisho T, Tsujimura T, Terada N, Forster I et al (1999) Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10:39–49

    Article  PubMed  CAS  Google Scholar 

  17. Kano A, Wolfgang MJ, Gao Q, Jacoby J, Chai GX, Hansen W et al (2003) Endothelial cells require STAT3 for protection against endotoxin-induced inflammation. J Exp Med 198:1517–1525

    Article  PubMed  CAS  Google Scholar 

  18. Wormald S, Hilton DJ (2004) Inhibitors of cytokine signal transduction. J Biol Chem 279:821–824

    Article  PubMed  CAS  Google Scholar 

  19. Metcalf D, Mifsud S, Di Rago L, Nicola NA, Hilton DJ, Alexander WS (2002) Polycystic kidneys and chronic inflammatory lesions are the delayed consequences of loss of the suppressor of cytokine signaling-1 (SOCS-1). Proc Natl Acad Sci USA 99:943–948

    Article  PubMed  CAS  Google Scholar 

  20. Yasukawa H, Ohishi M, Mori H, Murakami M, Chinen T, Aki D et al (2003) IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nat Immunol 4:551–556

    Article  PubMed  CAS  Google Scholar 

  21. Taleb S, Romain M, Ramkhelawon B, Uyttenhove C, Pasterkamp G, Herbin O et al (2009) Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J Exp Med 206:2067–2077

    Article  PubMed  CAS  Google Scholar 

  22. van Es T, van Puijvelde GH, Ramos OH, Segers FM, Joosten LA, van den Berg WB et al (2009) Attenuated atherosclerosis upon IL-17R signaling disruption in LDLr deficient mice. Biochem Biophys Res Commun 388:261–265

    Article  PubMed  CAS  Google Scholar 

  23. Erbel C, Chen L, Bea F, Wangler S, Celik S, Lasitschka F et al (2009) Inhibition of IL-17A attenuates atherosclerotic lesion development in apoE-deficient mice. J Immunol 183:8167–8175

    Article  PubMed  CAS  Google Scholar 

  24. Smith E, Prasad KM, Butcher M, Dobrian A, Kolls JK, Ley K et al (2010) Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation 121:1746–1755

    Article  PubMed  CAS  Google Scholar 

  25. Gao Q, Jiang Y, Ma T, Zhu F, Gao F, Zhang P et al (2010) A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. J Immunol 185:5820–5827

    Article  PubMed  CAS  Google Scholar 

  26. Eid RE, Rao DA, Zhou J, Lo SF, Ranjbaran H, Gallo A et al (2009) Interleukin-17 and interferon-gamma are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells. Circulation 119:1424–1432

    Article  PubMed  CAS  Google Scholar 

  27. Nathan C (2002) Points of control in inflammation. Nature 420:846–852

    Article  PubMed  CAS  Google Scholar 

  28. Liao F, Berliner JA, Mehrabian M, Navab M, Demer LL, Lusis AJ et al (1991) Minimally modified low density lipoprotein is biologically active invivo in mice. J Clin Invest 87:2253–2257

    Article  PubMed  CAS  Google Scholar 

  29. Birukov KG (2006) Oxidized lipids: the two faces of vascular inflammation. Curr Atheroscler Rep 8:223–231

    Article  PubMed  CAS  Google Scholar 

  30. Bochkov VN, Mechtcheriakova D, Lucerna M, Huber J, Malli R, Graier WF et al (2002) Oxidized phospholipids stimulate tissue factor expression in human endothelial cells via activation of ERK/EGR-1 and Ca(++)/NFAT. Blood 99:199–206

    Article  PubMed  CAS  Google Scholar 

  31. Cui MZ, Penn MS, Chisolm GM (1999) Native and oxidized low density lipoprotein induction of tissue factor gene expression in smooth muscle cells is mediated by both Egr-1 and Sp1. J Biol Chem 274:32795–32802

    Article  PubMed  CAS  Google Scholar 

  32. Kume N, Cybulsky MI, Gimbrone MA Jr (1992) Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest 90:1138–1144

    Article  PubMed  CAS  Google Scholar 

  33. Zhu Y, Lin JH, Liao HL, Verna L, Stemerman MB (1997) Activation of ICAM-1 promoter by lysophosphatidylcholine: possible involvement of protein tyrosine kinases. Biochim Biophys Acta 1345:93–98

    PubMed  CAS  Google Scholar 

  34. Takabe W, Kanai Y, Chairoungdua A, Shibata N, Toi S, Kobayashi M et al (2004) Lysophosphatidylcholine enhances cytokine production of endothelial cells via induction of L-type amino acid transporter 1 and cell surface antigen 4F2. Arterioscler Thromb Vasc Biol 24:1640–1645

    Article  PubMed  CAS  Google Scholar 

  35. Takahara N, Kashiwagi A, Maegawa H, Shigeta Y (1996) Lysophosphatidylcholine stimulates the expression and production of MCP-1 by human vascular endothelial cells. Metabolism 45:559–564

    Article  PubMed  CAS  Google Scholar 

  36. Rong JX, Berman JW, Taubman MB, Fisher EA (2002) Lysophosphatidylcholine stimulates monocyte chemoattractant protein-1 gene expression in rat aortic smooth muscle cells. Arterioscler Thromb Vasc Biol 22:1617–1623

    Article  PubMed  CAS  Google Scholar 

  37. Leitinger N (2003) Oxidized phospholipids as modulators of inflammation in atherosclerosis. Curr Opin Lipidol 14:421–430

    Article  PubMed  CAS  Google Scholar 

  38. Lassegue B, Griendling KK (2010) NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol 30:653–661

    Article  PubMed  CAS  Google Scholar 

  39. Marchesi C, Paradis P, Schiffrin EL (2008) Role of the renin-angiotensin system in vascular inflammation. Trends Pharmacol Sci 29:367–374

    Article  PubMed  CAS  Google Scholar 

  40. Ruster C, Wolf G (2008) The role of chemokines and chemokine receptors in diabetic nephropathy. Front Biosci 13:944–955

    Article  PubMed  CAS  Google Scholar 

  41. Dechend R, Viedt C, Muller DN, Ugele B, Brandes RP, Wallukat G et al (2003) AT1 receptor agonistic antibodies from preeclamptic patients stimulate NADPH oxidase. Circulation 107:1632–1639

    Article  PubMed  CAS  Google Scholar 

  42. Ni W, Kitamoto S, Ishibashi M, Usui M, Inoue S, Hiasa K et al (2004) Monocyte chemoattractant protein-1 is an essential inflammatory mediator in angiotensin II-induced progression of established atherosclerosis in hypercholesterolemic mice. Arterioscler Thromb Vasc Biol 24:534–539

    Article  PubMed  CAS  Google Scholar 

  43. Rahman ST, Lauten WB, Khan QA, Navalkar S, Parthasarathy S, Khan BV (2002) Effects of eprosartan versus hydrochlorothiazide on markers of vascular oxidation and inflammation and blood pressure (renin-angiotensin system antagonists, oxidation, and inflammation). Am J Cardiol 89:686–690

    Article  PubMed  CAS  Google Scholar 

  44. Dorffel Y, Latsch C, Stuhlmuller B, Schreiber S, Scholze S, Burmester GR et al (1999) Preactivated peripheral blood monocytes in patients with essential hypertension. Hypertension 34:113–117

    PubMed  CAS  Google Scholar 

  45. Yan SF, Ramasamy R, Naka Y, Schmidt AM (2003) Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications of diabetes and beyond. Circ Res 93:1159–1169

    Article  PubMed  CAS  Google Scholar 

  46. Vlassara H, Brownlee M, Manogue KR, Dinarello CA, Pasaglan A (1988) Cachectin/TNF and IL-1 induced by glucose-modified proteins: role in normal tissue remodeling. Science 240:1546–1548

    Article  PubMed  CAS  Google Scholar 

  47. Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y et al (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97:889–901

    Article  PubMed  CAS  Google Scholar 

  48. Basta G, Lazzerini G, Del Turco S, Ratto GM, Schmidt AM, De Caterina R (2005) At least 2 distinct pathways generating reactive oxygen species mediate vascular cell adhesion molecule-1 induction by advanced glycation end products. Arterioscler Thromb Vasc Biol 25(7):1401–1407

    Article  PubMed  CAS  Google Scholar 

  49. Kislinger T, Tanji N, Wendt T, Qu W, Lu Y, Ferran LJ Jr et al (2001) Receptor for advanced glycation end products mediates inflammation and enhanced expression of tissue factor in vasculature of diabetic apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 21:905–910

    Article  PubMed  CAS  Google Scholar 

  50. Park L, Raman KG, Lee KJ, Lu Y, Ferran LJ Jr, Chow WS et al (1998) Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat Med 4:1025–1031

    Article  PubMed  CAS  Google Scholar 

  51. Bucciarelli LG, Wendt T, Qu W, Lu Y, Lalla E, Rong LL et al (2002) RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E-null mice. Circulation 106:2827–2835

    Article  PubMed  CAS  Google Scholar 

  52. Chironi GN, Boulanger CM, Simon A, Dignat-George F, Freyssinet JM, Tedgui A (2009) Endothelial microparticles in diseases. Cell Tissue Res 335:143–151

    Article  PubMed  Google Scholar 

  53. Mause SF, von Hundelshausen P, Zernecke A, Koenen RR, Weber C (2005) Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler Thromb Vasc Biol 25:1512–1518

    Article  PubMed  CAS  Google Scholar 

  54. Barry OP, Pratico D, Savani RC, FitzGerald GA (1998) Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest 102:136–144

    Article  PubMed  CAS  Google Scholar 

  55. Wagner DD (2005) New links between inflammation and thrombosis. Arterioscler Thromb Vasc Biol 25:1321–1324

    Article  PubMed  CAS  Google Scholar 

  56. Andre P, Prasad KS, Denis CV, He M, Papalia JM, Hynes RO et al (2002) CD40L stabilizes arterial thrombi by a beta3 integrin–dependent mechanism. Nat Med 8:247–252

    Article  PubMed  CAS  Google Scholar 

  57. Mesri M, Altieri DC (1999) Leukocyte microparticles stimulate endothelial cell cytokine release and tissue factor induction in a JNK1 signaling pathway. J Biol Chem 274:23111–23118

    Article  PubMed  CAS  Google Scholar 

  58. Mallat Z, Hugel B, Ohan J, Leseche G, Freyssinet JM, Tedgui A (1999) Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity. Circulation 99:348–353

    PubMed  CAS  Google Scholar 

  59. Boulanger CM, Scoazec A, Ebrahimian T, Henry P, Mathieu E, Tedgui A et al (2001) Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction. Circulation 104:2649–2652

    Article  PubMed  CAS  Google Scholar 

  60. Leroyer AS, Rautou PE, Silvestre JS, Castier Y, Leseche G, Devue C et al (2008) CD40 ligand+ microparticles from human atherosclerotic plaques stimulate endothelial proliferation and angiogenesis a potential mechanism for intraplaque neovascularization. J Am Coll Cardiol 52:1302–1311

    Article  PubMed  CAS  Google Scholar 

  61. Parks WC, Wilson CL, Lopez-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4:617–629

    Article  PubMed  CAS  Google Scholar 

  62. Silence J, Lupu F, Collen D, Lijnen HR (2001) Persistence of atherosclerotic plaque but reduced aneurysm formation in mice with stromelysin-1 (MMP-3) gene inactivation. Arterioscler Thromb Vasc Biol 21:1440–1445

    Article  PubMed  CAS  Google Scholar 

  63. Caro CG (2009) Discovery of the role of wall shear in atherosclerosis. Arterioscler Thromb Vasc Biol 29:158–161

    Article  PubMed  CAS  Google Scholar 

  64. Yamawaki H, Pan S, Lee RT, Berk BC (2005) Fluid shear stress inhibits vascular inflammation by decreasing thioredoxin-interacting protein in endothelial cells. J Clin Invest 115:733–738

    PubMed  CAS  Google Scholar 

  65. SenBanerjee S, Lin Z, Atkins GB, Greif DM, Rao RM, Kumar A et al (2004) KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med 199:1305–1315

    Article  PubMed  CAS  Google Scholar 

  66. Hajra L, Evans AI, Chen M, Hyduk SJ, Collins T, Cybulsky MI (2000) The NF-κB signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc Natl Acad Sci USA 97:9052–9057

    Article  PubMed  CAS  Google Scholar 

  67. Castier Y, Ramkhelawon B, Riou S, Tedgui A, Lehoux S (2009) Role of NF-kappaB in flow-induced vascular remodeling. Antioxid Redox Signal 11:1641–1649

    Article  PubMed  CAS  Google Scholar 

  68. Riou S, Mees B, Esposito B, Merval R, Vilar J, Stengel D et al (2007) High pressure promotes monocyte adhesion to the vascular wall. Circ Res 100:1226–1233

    Article  PubMed  CAS  Google Scholar 

  69. Capers Qt, Alexander RW, Lou P, De Leon H, Wilcox JN, Ishizaka N et al (1997) Monocyte chemoattractant protein-1 expression in aortic tissues of hypertensive rats. Hypertension 30:1397–1402

    PubMed  CAS  Google Scholar 

  70. Wang H, Nawata J, Kakudo N, Sugimura K, Suzuki J, Sakuma M et al (2004) The upregulation of ICAM-1 and P-selectin requires high blood pressure but not circulating renin-angiotensin system in vivo. J Hypertens 22:1323–1332

    Article  PubMed  CAS  Google Scholar 

  71. Kaplanski G, Marin V, Fabrigoule M, Boulay V, Benoliel AM, Bongrand P et al (1998) Thrombin-activated human endothelial cells support monocyte adhesion in vitro following expression of intercellular adhesion molecule-1 (ICAM-1; CD54) and vascular cell adhesion molecule-1 (VCAM-1; CD106). Blood 92:1259–1267

    PubMed  CAS  Google Scholar 

  72. Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84:869–901

    Article  PubMed  CAS  Google Scholar 

  73. Komarova Y, Malik AB (2010) Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol 72:463–493

    Article  PubMed  CAS  Google Scholar 

  74. Camerer E, Regard JB, Cornelissen I, Srinivasan Y, Duong DN, Palmer D et al (2009) Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J Clin Invest 119:1871–1879

    PubMed  CAS  Google Scholar 

  75. Bevilacqua MP, Stengelin S, Gimbrone MA Jr, Seed B (1989) Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 243:1160–1165

    Article  PubMed  CAS  Google Scholar 

  76. Cybulsky MI, Gimbrone MA Jr (1991) Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251:788–791

    Article  PubMed  CAS  Google Scholar 

  77. Zernecke A, Weber C (2010) Chemokines in the vascular inflammatory response of atherosclerosis. Cardiovasc Res 86:192–201

    Article  PubMed  CAS  Google Scholar 

  78. Kume N, Kita T (2001) Roles of lectin-like oxidized LDL receptor-1 and its soluble forms in atherogenesis. Curr Opin Lipidol 12:419–423

    Article  PubMed  CAS  Google Scholar 

  79. Hsu HY, Nicholson AC, Hajjar DP (1996) Inhibition of macrophage scavenger receptor activity by tumor necrosis factor-alpha is transcriptionally and post-transcriptionally regulated. J Biol Chem 271:7767–7773

    Article  PubMed  CAS  Google Scholar 

  80. Wuttge DM, Zhou X, Sheikine Y, Wagsater D, Stemme V, Hedin U et al (2004) CXCL16/SR-PSOX is an interferon-gamma-regulated chemokine and scavenger receptor expressed in atherosclerotic lesions. Arterioscler Thromb Vasc Biol 24:750–755

    Article  PubMed  CAS  Google Scholar 

  81. Shashkin P, Dragulev B, Ley K (2005) Macrophage differentiation to foam cells. Curr Pharm Des 11:3061–3072

    Article  PubMed  CAS  Google Scholar 

  82. Yin K, Liao DF, Tang CK (2010) ATP-binding membrane cassette transporter A1 (ABCA1): a possible link between inflammation and reverse cholesterol transport. Mol Med 16:438–449

    Article  PubMed  CAS  Google Scholar 

  83. Libby P, Warner SJ, Friedman GB (1988) Interleukin 1: a mitogen for human vascular smooth muscle cells that induces the release of growth-inhibitory prostanoids. J Clin Invest 81:487–498

    Article  PubMed  CAS  Google Scholar 

  84. Hansson GK, Holm J, Holm S, Fotev Z, Hedrich HJ, Fingerle J (1991) Lymphocytes-t inhibit the vascular response to injury. Proc Natl Acad Sci USA 88:10530–10534

    Article  PubMed  CAS  Google Scholar 

  85. Yokota T, Shimokado K, Kosaka C, Sasaguri T, Masuda J, Ogata J (1992) Mitogenic activity of interferon gamma on growth-arrested human vascular smooth muscle cells. Arterioscler Thromb 12:1393–1401

    Article  PubMed  CAS  Google Scholar 

  86. Ferns GAA, Reidy MA, Ross R (1991) Balloon catheter de-endothelialization of the nude rat carotid - response to injury in the absence of functional lymphocyte-t. Am J Pathol 138:1045–1057

    PubMed  CAS  Google Scholar 

  87. Tellides G, Tereb DA, Kirkiles-Smith NC, Kim RW, Wilson JH, Schechner JS et al (2000) Interferon-gamma elicits arteriosclerosis in the absence of leukocytes. Nature 403:207–211

    Article  PubMed  CAS  Google Scholar 

  88. Wang Y, Bai Y, Qin L, Zhang P, Yi T, Teesdale SA et al (2007) Interferon-gamma induces human vascular smooth muscle cell proliferation and intimal expansion by phosphatidylinositol 3-kinase dependent mammalian target of rapamycin raptor complex 1 activation. Circ Res 101:560–569

    Article  PubMed  CAS  Google Scholar 

  89. Cuffy MC, Silverio AM, Qin L, Wang Y, Eid R, Brandacher G et al (2007) Induction of indoleamine 2,3-dioxygenase in vascular smooth muscle cells by interferon-gamma contributes to medial immunoprivilege. J Immunol 179:5246–5254

    PubMed  CAS  Google Scholar 

  90. Newby AC (2005) Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev 85:1–31

    Article  PubMed  CAS  Google Scholar 

  91. Amento EP, Ehsani N, Palmer H, Libby P (1991) Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb 11:1223–1230

    Article  PubMed  CAS  Google Scholar 

  92. Shimizu K, Shichiri M, Libby P, Lee RT, Mitchell RN (2004) Th2-predominant inflammation and blockade of IFN-gamma signaling induce aneurysms in allografted aortas. J Clin Invest 114:300–308

    PubMed  CAS  Google Scholar 

  93. Epstein SE, Stabile E, Kinnaird T, Lee CW, Clavijo L, Burnett MS (2004) Janus phenomenon: the interrelated tradeoffs inherent in therapies designed to enhance collateral formation and those designed to inhibit atherogenesis. Circulation 109:2826–2831

    Article  PubMed  Google Scholar 

  94. Bodary PF, Gu S, Shen Y, Hasty AH, Buckler JM, Eitzman DT, Bodary PF, Gu S, Shen Y, Hasty AH, Buckler JM, Eitzman DT (2005) Recombinant leptin promotes atherosclerosis and thrombosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 25(8):e119–e122, ATVB published 9 June 2005, 10.1161/01.ATV.0000173306.47722.ec

    Article  PubMed  CAS  Google Scholar 

  95. Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K et al (2003) Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9:1370–1376

    Article  PubMed  CAS  Google Scholar 

  96. Knowles JW, Reddick RL, Jennette JC, Shesely EG, Smithies O, Maeda N (2000) Enhanced atherosclerosis and kidney dysfunction in eNOS(−/−)Apoe(−/−) mice are ameliorated by enalapril treatment. J Clin Invest 105:451–458

    Article  PubMed  CAS  Google Scholar 

  97. Littlewood TD, Bennett MR (2003) Apoptotic cell death in atherosclerosis. Curr Opin Lipidol 14:469–475

    Article  PubMed  CAS  Google Scholar 

  98. Mallat Z, Heymes C, Ohan J, Faggin E, Lesèche G, Tedgui A (1999) Expression of interleukin-10 in human atherosclerotic plaques. Relation to inducible nitric oxide synthase expression and cell death. Arterioscler Thromb Vasc Biol 19:611–616

    Article  PubMed  CAS  Google Scholar 

  99. Geng YJ, Libby P (2002) Progression of atheroma: a struggle between death and procreation. Arterioscler Thromb Vasc Biol 22:1370–1380

    Article  PubMed  CAS  Google Scholar 

  100. Boyle JJ, Weissberg PL, Bennett MR (2003) Tumor necrosis factor-alpha promotes macrophage-induced vascular smooth muscle cell apoptosis by direct and autocrine mechanisms. Arterioscler Thromb Vasc Biol 23:1553–1558

    Article  PubMed  CAS  Google Scholar 

  101. Kim YM, Talanian RV, Li J, Billiar TR (1998) Nitric oxide prevents IL-1beta and IFN-gamma-inducing factor (IL-18) release from macrophages by inhibiting caspase-1 (IL-1beta-converting enzyme). J Immunol 161:4122–4128

    PubMed  CAS  Google Scholar 

  102. Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7:99–109

    Article  PubMed  CAS  Google Scholar 

  103. Martinet W, De Meyer GR (2008) Autophagy in atherosclerosis. Curr Atheroscler Rep 10:216–223

    Article  PubMed  CAS  Google Scholar 

  104. Esmon CT (2004) The impact of the inflammatory response on coagulation. Thromb Res 114:321–327

    Article  PubMed  CAS  Google Scholar 

  105. Klein NJ, Shennan GI, Heyderman RS, Levin M (1992) Alteration in glycosaminoglycan metabolism and surface charge on human umbilical vein endothelial cells induced by cytokines, endotoxin and neutrophils. J Cell Sci 102:821–832

    PubMed  CAS  Google Scholar 

  106. Conway EM, Van de Wouwer M, Pollefeyt S, Jurk K, Van Aken H, De Vriese A et al (2002) The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways. J Exp Med 196:565–577

    Article  PubMed  CAS  Google Scholar 

  107. Scarpati EM, Sadler JE (1989) Regulation of endothelial cell coagulant properties. Modulation of tissue factor, plasminogen activator inhibitors, and thrombomodulin by phorbol 12-myristate 13-acetate and tumor necrosis factor. J Biol Chem 264:20705–20713

    PubMed  CAS  Google Scholar 

  108. Burstein SA (1994) Platelets and cytokines. Curr Opin Hematol 1:373–380

    PubMed  CAS  Google Scholar 

  109. Wang Y, Ait-Oufella H, Herbin O, Bonnin P, Ramkhelawon B, Taleb S et al (2010) TGF-beta activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II-infused mice. J Clin Invest 120:422–432

    Article  PubMed  CAS  Google Scholar 

  110. Chae CU, Lee RT, Rifai N, Ridker PM (2001) Blood pressure and inflammation in apparently healthy men. Hypertension 38:399–403

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Tedgui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Ait-Oufella, H., Mallat, Z., Tedgui, A. (2012). Mediators of Vascular Inflammation. In: Wick, G., Grundtman, C. (eds) Inflammation and Atherosclerosis. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0338-8_10

Download citation

Publish with us

Policies and ethics