Skip to main content

Primary Microtubule Structures in Giardia

  • Chapter
Book cover Giardia

Abstract

Giardia intestinalis is a common parasitic protist with a complex microtubule cytoskeleton critical for cellular function and transitioning between the cyst and trophozoite life cycle stages. The giardial microtubule cytoskeleton is comprised of highly dynamic and stable structures including the eight flagella, the ventral disc, the median body, and the funis. Novel microtubule structures like the ventral disc are essential for the parasite’s attachment to the intestinal villi to avoid peristalsis. Fundamental areas of giardial cytoskeletal biology remain to be explored and knowledge of the molecular mechanisms of cytoskeletal functioning is needed to better understand Giardia’s unique biology and pathogenesis. The completed Giardia genome combined with new molecular genetic tools and live imaging will aid in the characterization and analysis of cytoskeletal dynamics throughout the giardial life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam RD (2001) Biology of Giardia lamblia. Clin Microbiol Rev 14(3): 447–475

    Article  PubMed  CAS  Google Scholar 

  • Bauer B, Engelbrecht S, et al. (1999) Functional identification of alpha 1-giardin as an annexin of Giardia lamblia. FEMS Microbiol Lett 173(1): 147–153

    PubMed  CAS  Google Scholar 

  • Belhadri A (1995) Presence of centrin in the human parasite Giardia: a further indication of its ubiquity in eukaryotes. Biochem Biophys Res Commun 214: 597–601

    Article  PubMed  CAS  Google Scholar 

  • Benchimol M (2004) Participation of the adhesive disc during karyokinesis in Giardia lamblia. Biol Cell 96(4): 291–301

    PubMed  Google Scholar 

  • Benchimol M and Piva B, et al. (2004) Visualization of the funis of Giardia lamblia by high-resolution field emission scanning electron microscopy — new insights. J Struct Biol 147(2): 102–115

    Article  PubMed  Google Scholar 

  • Bhattacharyya B, Panda D, et al. (2008) Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med Res Rev 28(1): 155–183

    Article  PubMed  CAS  Google Scholar 

  • Blaineau C, Tessier M, et al. (2007) A novel microtubule-depolymerizing kinesin involved in length control of a eukaryotic flagellum. Curr Biol 17(9): 778–782

    Article  PubMed  CAS  Google Scholar 

  • Briggs LJ, Davidge JA, et al. (2004) More than one way to build a flagellum: comparative genomics of parasitic protozoa. Curr Biol 14(15): R611–R612

    Article  PubMed  CAS  Google Scholar 

  • Brugerolle G (1975) Contribution à l’étude cytologique et phylétique des diplozoaires (Zoomastigophorea, Diplozoa, Dangeard 1910). V. Nouvelle interpretation de l’organisation cellulaire de Giardie. Protistologica 11: 99–1

    Google Scholar 

  • Buchel LA, Gorenflot A, et al. (1987) In vitro excystation of Giardia from humans: a scanning electron microscopy study. J Parasitol 73(3): 487–493

    Article  PubMed  CAS  Google Scholar 

  • Campanati L, Holloschi A, et al. (2002) Video-microscopy observations of fast dynamic processes in the protozoon Giardia lamblia. Cell Motil Cytoskeleton 51(4): 213–224

    Article  PubMed  Google Scholar 

  • Carpenter ML and Cande WZ (2009) Using morpholinos for gene knockdown in Giardia intestinalis. Eukaryot Cell 8(6): 916–919

    Article  PubMed  CAS  Google Scholar 

  • Carvalho KP and Monteiro-Leal LH (2004) The caudal complex of Giardia lamblia and its relation to motility. Exp Parasitol 108(3–4): 154–162

    Article  PubMed  CAS  Google Scholar 

  • Castillo-Romero A, Leon-Avila G, et al. (2009) Participation of actin on Giardia lamblia growth and encystation. PLoS One 4(9): e7156

    Article  PubMed  CAS  Google Scholar 

  • Chavez B and Cedillo-Rivera R, et al. (1992) Giardia lamblia: ultrastructural study of the in vitro effect of benzimidazoles. J Protozool 39(4): 510–515

    PubMed  CAS  Google Scholar 

  • Chavez B and Martinez-Palomo A (1995) Giardia lamblia: freeze-fracture ultrastructure of the ventral disc plasma membrane. J Eukaryot Microbiol 42(2): 136–141

    Article  PubMed  CAS  Google Scholar 

  • Clark JT and Holberton DV (1988) Triton-labile antigens in flagella isolated from Giardia lamblia. Parasitol Res 74(5): 415–423

    Article  PubMed  CAS  Google Scholar 

  • Crossley R and Holberton DV (1983) Selective extraction with Sarkosyl and repolymerization in vitro of cytoskeleton proteins from Giardia. J Cell Sci 62: 419–438

    PubMed  CAS  Google Scholar 

  • Crossley R and Holberton D (1985) Assembly of 2.5 nm filaments from giardin, a protein associated with cytoskeletal microtubules in Giardia. J Cell Sci 78: 205–231

    PubMed  CAS  Google Scholar 

  • Crossley R, Marshall J, et al. (1986) Immunocytochemical differentiation of microtubules in the cytoskeleton of Giardia lamblia using monoclonal antibodies to alpha-tubulin and polyclonal antibodies to associated low molecular weight proteins. J Cell Sci 80: 233–252

    PubMed  CAS  Google Scholar 

  • Davis-Hayman SR and Nash TE (2002) Genetic manipulation of Giardia lamblia. Mol Biochem Parasitol 122(1): 1–7

    Article  PubMed  CAS  Google Scholar 

  • Dawson SC (2010) An insider’s guide to the microtubule cytoskeleton of Giardia. Cell Microbiol 12(5): 588–598

    Article  PubMed  CAS  Google Scholar 

  • Dawson SC and Sagolla MS, et al. (2007a) The cenH3 histone variant defines centromeres in Giardia intestinalis. Chromosoma 116(2): 175–184

    Article  PubMed  CAS  Google Scholar 

  • Dawson SC, Sagolla MS, et al. (2007b) Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis. Eukaryot Cell 6(12): 2354–2364

    Article  PubMed  CAS  Google Scholar 

  • Décavé E, Garrivier D, et al. (2002) Shear flow-induced detachment kinetics of dictyostelium discoideum cells from solid substrate. Biophys J 82: 2383–2395

    Article  PubMed  Google Scholar 

  • Dutcher SK (1995) Flagellar assembly in two hundred and fifty easy-to-follow steps. Trends Genet 11(10): 398–404

    Article  PubMed  CAS  Google Scholar 

  • Elmendorf HG, Dawson SC, et al. (2003) The cytoskeleton of Giardia lamblia. Int J Parasitol 33(1): 3–28

    Article  PubMed  Google Scholar 

  • Elmendorf HG, Rohrer SC, et al. (2005) Examination of a novel head-stalk protein family in Giardia lamblia characterised by the pairing of ankyrin repeats and coiled-coil domains. Int J Parasitol 35(9): 1001–1011

    Article  PubMed  CAS  Google Scholar 

  • Evans JG and Matsudaira P (2006) Structure and dynamics of macrophage podosomes. Eur J Cell Biol 85(3–4): 145–149

    Article  PubMed  CAS  Google Scholar 

  • Feely DE (1986) A simplified method for in vitro excystation of Giardia muris. J Parasitol 72(3): 474–475

    Article  PubMed  CAS  Google Scholar 

  • Feely DE and Erlandsen SL (1981) Isolation and purification of Giardia trophozoites from rat intestine. J Parasitol 67(1): 59–64

    Article  PubMed  CAS  Google Scholar 

  • Feely DE and Erlandsen SL (1982) Effect of cytochalasin-B, low Ca++ concentration, iodoacetic acid, and quinacrine-HCl on the attachment of Giardia trophozoites in vitro. J Parasitol 68(5): 869–873

    Article  PubMed  CAS  Google Scholar 

  • Feely DE, Schollmeyer JV, et al. (1982) Giardia spp.: distribution of contractile proteins in the attachment organelle. Exp Parasitol 53(1): 145–154

    Article  PubMed  CAS  Google Scholar 

  • Feely DEH and Erlandsen DV, S L (1990) The biology of Giardia. In: Giardiasis, vol. 3 (E.A. Mayer, ed.). Elsevier, Amsterdam and New York, pp 11–49

    Google Scholar 

  • Friend DS (1966) The fine structure of Giardia muris. J Cell Biol 29(2): 317–332

    Article  PubMed  CAS  Google Scholar 

  • Gaechter V, Schraner E, et al. (2008) The single dynamin family protein in the primitive protozoan Giardia lamblia is essential for stage conversion and endocytic transport. Traffic 9(1): 57–71

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Frisardi M, et al. (2001) How Giardia swim and divide. Infect Immun 69(12): 7866–7872

    Article  PubMed  CAS  Google Scholar 

  • Han YG, Kwok BH, et al. (2003) Intraflagellar transport is required in Drosophila to differentiate sensory cilia but not sperm. Curr Biol 13(19): 1679–1686

    Article  PubMed  CAS  Google Scholar 

  • Hansen WR and Fletcher DA (2008) Tonic shock induces detachment of Giardia lamblia. PLoS Negl Trop Dis 2(2): e169

    Article  PubMed  CAS  Google Scholar 

  • Hansen WR, Tulyathan O, et al. (2006) Giardia lamblia attachment force is insensitive to surface treatments. Eukaryot Cell 5(4): 781–783

    Article  PubMed  CAS  Google Scholar 

  • Haycraft CJ, Swoboda P, et al. (2001) The C. elegans homolog of the murine cystic kidney disease gene Tg737 functions in a ciliogenic pathway and is disrupted in osm-5 mutant worms. Development 128(9): 1493–1505

    PubMed  CAS  Google Scholar 

  • Heuser T, Raytchev M, et al. (2009) The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J Cell Biol 187(6): 921–933

    Article  PubMed  CAS  Google Scholar 

  • Hoeng JC, Dawson SC, et al. (2008) High resolution crystal structure and in vivo function of a kinesin-2 homolog in Giardia intestinalis. Mol Biol Cell 19(7): 3124–3137

    Article  PubMed  CAS  Google Scholar 

  • Holberton DV (1973a) Fine structure of the ventral disk apparatus and the mechanism of attachment in the flagellate Giardia muris. J Cell Sci 13(1): 11–41

    PubMed  CAS  Google Scholar 

  • Holberton DV (1973b) Mechanism of attachment of Giardia to the wall of the small intestine. Trans R Soc Trop Med Hyg 67(1): 29–30

    Article  PubMed  CAS  Google Scholar 

  • Holberton DV (1974) Attachment of Giardia — a hydrodynamic model based on flagellar activity. J Exp Biol 60(1): 207–221

    PubMed  CAS  Google Scholar 

  • Holberton DV (1981) Arrangement of subunits in microribbons from Giardia. J Cell Sci 47: 167–185

    PubMed  CAS  Google Scholar 

  • Holberton DV and Ward AP (1981) Isolation of the cytoskeleton from Giardia. Tubulin and a low-molecular-weight protein associated with microribbon structures. J Cell Sci 47: 139–166

    PubMed  CAS  Google Scholar 

  • Inge PM, Edson CM, et al. (1988) Attachment of Giardia lamblia to rat intestinal epithelial cells.” Gut 29(6): 795–801

    Article  PubMed  CAS  Google Scholar 

  • Keller LC and Marshall WF (2008) Isolation and proteomic analysis of Chlamydomonas centrioles. Methods Mol Biol 432: 289–300

    Article  PubMed  CAS  Google Scholar 

  • Keller LC, Romijn EP, Zamora I, Yates JR, 3rd, Marshall WF (2005) Proteomic analysis of isolated chlamydomonas centrioles reveals orthologs of ciliary-disease genes. Curr Biol 15: 1090–1098.

    Article  PubMed  CAS  Google Scholar 

  • Kilburn CL, Pearson CG, et al. (2007) New Tetrahymena basal body protein components identify basal body domain structure. J Cell Biol 178(6): 905–912

    Article  PubMed  CAS  Google Scholar 

  • Knight J (2004) Giardia: not so special, after all? Nature 429(6989): 236–237

    Article  PubMed  CAS  Google Scholar 

  • Kozminski KG, Johnson KA, et al. (1993) A motility in the eukaryotic flagellum unrelated to flagellar beating.” Proc Natl Acad Sci U S A 90(12): 5519–5523

    Article  PubMed  CAS  Google Scholar 

  • Kozminski KG, Beech PL, et al. (1995) The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J Cell Biol 131(6 Pt 1): 1517–1527

    Article  PubMed  CAS  Google Scholar 

  • Kulda J and Nohynkova E (1995) Giardia in humans and animals. In: Parasitic Protozoa, vol. 10 (J.P. Kreier, ed.). Academic Press, Inc., San Diego, pp 225–423

    Google Scholar 

  • Lechtreck KF and Grunow A (1999) Evidence for a direct role of nascent basal bodies during spindle pole initiation in the green alga Spermatozopsis similis. Protist 150(2): 163–181

    Article  PubMed  CAS  Google Scholar 

  • Li JB, Gerdes JM, et al. (2004) Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 117(4): 541–552

    Article  PubMed  CAS  Google Scholar 

  • Lin F, Hiesberger T, et al. (2003) Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease.” Proc Natl Acad Sci U S A 100(9): 5286–5291

    Article  PubMed  CAS  Google Scholar 

  • Long HJ (1994) Paclitaxel (Taxol): a novel anticancer chemotherapeutic drug. Mayo Clin Proc 69(4): 341–345

    Article  PubMed  CAS  Google Scholar 

  • Luck DJ (1984) Genetic and biochemical dissection of the eucaryotic flagellum. J Cell Biol 98(3): 789–794

    Article  PubMed  CAS  Google Scholar 

  • Magne D, Favennec L, et al. (1991) Role of cytoskeleton and surface lectins in Giardia duodenalis attachment to Caco2 cells. Parasitol Res 77(8): 659–662

    Article  PubMed  CAS  Google Scholar 

  • Manton, I. a. C., B. (1952) An electron microscope study of teh spermatozoid of Sphagnum. J Exp Bot 3: 265–275

    Article  Google Scholar 

  • Mariante RM, Vancini RG, et al. (2005) Giardia lamblia: evaluation of the in vitro effects of nocodazole and colchicine on trophozoites. Exp Parasitol 110(1): 62–72

    Article  PubMed  CAS  Google Scholar 

  • Marshall J and Holberton DV (1993) Sequence and structure of a new coiled coil protein from a microtubule bundle in Giardia. J Mol Biol 231(2): 521–530

    Article  PubMed  CAS  Google Scholar 

  • Meng T-C, Hetsko ML and Gillin FD (1996) Inhibition of Giardia lamblia excystation by antibodies against cyst walls and by wheat germ agglutinin. Infect Immun 64: 2151–2157

    PubMed  CAS  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, et al. (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318: 245–250

    Article  PubMed  CAS  Google Scholar 

  • Midlej V and Benchimol M (2009) Giardia lamblia behavior during encystment: how morphological changes in shape occur. Parasitol Int 58(1): 72–80

    Article  PubMed  Google Scholar 

  • Morrison HG, McArthur AG, et al. (2007) Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317(5846): 1921–1926

    Article  PubMed  CAS  Google Scholar 

  • Nash TE, Gillin FD, et al. (1983) Excretory-secretory products of Giardia lamblia. J Immunol 131(4): 2004–2010

    PubMed  CAS  Google Scholar 

  • Nicastro D, Schwartz C, et al. (2006) The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313(5789): 944–948

    Article  PubMed  CAS  Google Scholar 

  • Nohria A, Alonso RA, et al. (1992) Identification and characterization of gamma-giardin and the gamma-giardin gene from Giardia lamblia. Mol Biochem Parasitol 56(1): 27–37

    Article  PubMed  CAS  Google Scholar 

  • Ortega-Barria E, Ward HD, et al. (1994) Growth inhibition of the intestinal parasite Giardia lamblia by a dietary lectin is associated with arrest of the cell cycle. J Clin Invest 94(6): 2283–2288

    Article  PubMed  CAS  Google Scholar 

  • Ostrowski LE, Blackburn K, et al. (2002) A proteomic analysis of human cilia: identification of novel components. Mol Cell Proteomics 1(6): 451–465

    Article  PubMed  CAS  Google Scholar 

  • Owen RL (1980) The ultrastructural basis of Giardia function. Trans R Soc Trop Med Hyg 74(4): 429–433

    Article  PubMed  CAS  Google Scholar 

  • Oxberry ME, Thompson RC, et al. (1994) Evaluation of the effects of albendazole and metronidazole on the ultrastructure of Giardia duodenalis, Trichomonas vaginalis and Spironucleus muris using transmission electron microscopy. Int J Parasitol 24(5): 695–703

    Article  PubMed  CAS  Google Scholar 

  • Palm D, Weiland M, et al. (2005) Developmental changes in the adhesive disk during Giardia differentiation. Mol Biochem Parasitol 141(2): 199–207

    Article  PubMed  CAS  Google Scholar 

  • Pazour GJ, Dickert BL, et al. (2000) Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 151(3): 709–718

    Article  PubMed  CAS  Google Scholar 

  • Pazour GJ, Agrin N, et al. (2005) Proteomic analysis of a eukaryotic cilium. J Cell Biol 170(1): 103–113

    Article  PubMed  CAS  Google Scholar 

  • Peattie DA (1990) The giardins of Giardia lamblia: genes and proteins with promise. Parasitol Today 6(2): 52–56

    Article  PubMed  CAS  Google Scholar 

  • Pellegrin S and Mellor H (2007) Actin stress fibres. J Cell Sci 120(Pt 20): 3491–3499

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini F and Budman DR (2005) Review: tubulin function, action of antitubulin drugs, and new drug development. Cancer Invest 23(3): 264–273

    Article  PubMed  CAS  Google Scholar 

  • Piva B and Benchimol M (2004) The median body of Giardia lamblia: an ultrastructural study. Biol Cell 96(9): 735–746

    Article  PubMed  Google Scholar 

  • Porter ME and Sale WS (2000) The 9 + 2 axoneme anchors multiple inner arm dyneins and a network of kinases and phosphatases that control motility. J Cell Biol 151(5): F37–F42

    Article  PubMed  CAS  Google Scholar 

  • Poxleitner MK, Carpenter ML, et al. (2008) Evidence for karyogamy and exchange of genetic material in the binucleate intestinal parasite Giardia intestinalis. Science 319(5869): 1530–1533

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum JL and Witman GB (2002) Intraflagellar transport. Nat Rev Mol Cell Biol 3(11): 813–825

    Article  PubMed  CAS  Google Scholar 

  • Roxstrom-Lindquist K, Palm D, et al. (2006) Giardia immunity — an update. Trends Parasitol 22(1): 26–31

    Article  PubMed  CAS  Google Scholar 

  • Sagolla MS, Dawson SC, et al. (2006) Three-dimensional analysis of mitosis and cytokinesis in the binucleate parasite Giardia intestinalis. J Cell Sci 119(Pt 23): 4889–4900

    Article  PubMed  CAS  Google Scholar 

  • Scholey JM (2003) Intraflagellar transport. Annu Rev Cell Dev Biol 19: 423–443

    Article  PubMed  CAS  Google Scholar 

  • Signor D, Wedaman KP, et al. (1999) Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans. J Cell Biol 147(3): 519–530

    Article  PubMed  CAS  Google Scholar 

  • Sloboda RD (2002) A healthy understanding of intraflagellar transport. Cell Motil Cytoskeleton 52(1): 1–8

    Article  PubMed  CAS  Google Scholar 

  • Smith EF and Yang P (2004) The radial spokes and central apparatus: mechano-chemical transducers that regulate flagellar motility. Cell Motil Cytoskeleton 57(1): 8–17

    Article  PubMed  CAS  Google Scholar 

  • Snell WJ, Pan J, et al. (2004) Cilia and flagella revealed: from flagellar assembly in Chlamydomonas to human obesity disorders. Cell 117(6): 693–697

    Article  PubMed  CAS  Google Scholar 

  • Solari AJ, Rahn MI, et al. (2003) A unique mechanism of nuclear division in Giardia lamblia involves components of the ventral disk and the nuclear envelope. Biocell 27(3): 329–346

    PubMed  Google Scholar 

  • Sousa MC, Concalves CA, Bairos VA and Poiares-Da-Silva J (2001) Adherence of Giardia lamblia trophozoites to Int-407 human intestinal cells. Clin Diagn Lab Immunol 8: 258–265

    PubMed  CAS  Google Scholar 

  • Szkodowska A, Muller MC, et al. (2002) Annexin XXI (ANX21) of Giardia lamblia has sequence motifs uniquely sdhared by giardial annexins and is specifically localized in the flagella. J Biol Chem 277(28): 25703–25706

    Article  PubMed  CAS  Google Scholar 

  • Touz MC, Conrad JT, et al. (2005) A novel palmitoyl acyl transferase controls surface protein palmitoylation and cytotoxicity in Giardia lamblia. Mol Microbiol 58(4): 999–1011

    Article  PubMed  CAS  Google Scholar 

  • Tsang PH and Li G, et al. (2006) Adhesion of single bacterial cells in the micronewton range. Proc Natl Acad Sci U S A 103(15): 5764–5768

    Article  PubMed  CAS  Google Scholar 

  • Vahrmann A, Saric M, et al. (2008) alpha14-Giardin (annexin E1) is associated with tubulin in trophozoites of Giardia lamblia and forms local slubs in the flagella. Parasitol Res 102(2): 321–326

    Article  PubMed  CAS  Google Scholar 

  • Weber K, Geisler N, et al. (1993) SF-assemblin, the structural protein of the 2-nm filaments from striated microtubule associated fibers of algal flagellar roots, forms a segmented coiled coil. J Cell Biol 121(4): 837–845

    Article  PubMed  CAS  Google Scholar 

  • Wedaman KP, Meyer DW, et al. (1996) Sequence and submolecular localization of the 115-kD accessory subunit of the heterotrimeric kinesin-II (KRP85/95) complex. J Cell Biol 132(3): 371–380

    Article  PubMed  CAS  Google Scholar 

  • Weiland ME, Palm JE, et al. (2003) Characterisation of alpha-1 giardin: an immunodominant Giardia lamblia annexin with glycosaminoglycan-binding activity. Int J Parasitol 33(12): 1341–1351

    Article  PubMed  CAS  Google Scholar 

  • Weiland ME, McArthur AG, et al. (2005) Annexin-like alpha giardins: a new cytoskeletal gene family in Giardia lamblia. Int J Parasitol 35(6): 617–626

    Article  PubMed  CAS  Google Scholar 

  • Wickstead B Gull K (2007) Dyneins across eukaryotes: a comparative genomic analysis. Traffic 8: 1708–1721

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Dawson, S.C. (2011). Primary Microtubule Structures in Giardia . In: Luján, H.D., Svärd, S. (eds) Giardia. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0198-8_18

Download citation

Publish with us

Policies and ethics