Skip to main content

The Use of Field-Flow Fractionation for the Analysis of Drug and Gene Delivery Systems

  • Chapter
  • First Online:
Field-Flow Fractionation in Biopolymer Analysis

Abstract

An increasingly large number of drug formulations consist of drug-loaded nanoparticles of controlled size, composition, and surface chemistry. Field-flow fractionation (FFF) has emerged as a powerful tool for the physico-chemical characterization of nanoparticulate drug and gene delivery systems. The enabling features and technical difficulties of FFF are assessed in the specific context of drug formulations. The FFF analysis of various classes of drug and gene delivery systems are described, including microspheres, solid lipid nanoparticles, melt extrudates, emulsions, dendrimers, nanogels, lipid/DNA complexes, and polycation/DNA complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaumet M, Vargas A, Gurny R, Delie F (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 69(1):1–9

    Article  CAS  Google Scholar 

  2. Fraunhofer W, Winter G (2004) The use of asymmetrical flow field-flow fractionation in pharmaceutics and biopharmaceutics. Eur J Pharm Biopharm 58(2):369–383

    Article  CAS  Google Scholar 

  3. Roda B, Zattoni A, Reschiglian P, Moon MH, Mirasoli M, Michelini E, Roda A (2009) Field-flow fractionation in bioanalysis: a review of recent trends. Anal Chim Acta 635(2):132–143

    Article  CAS  Google Scholar 

  4. Qureshi RN, Kok WT (2011) Application of flow field-flow fractionation for the characterization of macromolecules of biological interest: a review. Anal Bioanal Chem 399(4):1401–1411

    Article  CAS  Google Scholar 

  5. Williams SK, Lee D (2006) Field-flow fractionation of proteins, polysaccharides, synthetic polymers, and supramolecular assemblies. J Sep Sci 29(12):1720–1732

    Article  CAS  Google Scholar 

  6. Williams SK, Runyon JR, Ashames AA (2010) Field-flow fractionation: addressing the nano challenge. Anal Chem 83(3):634–642

    Article  Google Scholar 

  7. Weers JG, Arlauskas RA (2004) Particle size analysis of perfluorocarbon emulsions in a complex whole blood matrix by sedimentation field-flow fractionation. Colloids Surf B Biointerfaces 33(3–4):265–269

    Article  CAS  Google Scholar 

  8. Smith MH, South AB, Gaulding JC, Lyon LA (2010) Monitoring the erosion of hydrolytically-degradable nanogels via multiangle light scattering coupled to asymmetrical flow field-flow fractionation. Anal Chem 82(2):523–530

    Article  CAS  Google Scholar 

  9. Hupfeld S, Moen HH, Ausbacher D, Haas H, Brandl M (2010) Liposome fractionation and size analysis by asymmetrical flow field-flow fractionation/multi-angle light scattering: influence of ionic strength and osmotic pressure of the carrier liquid. Chem Phys Lipids 163(2):141–147

    Article  CAS  Google Scholar 

  10. Zhao Y, Fu J, Ng DKP, Wu C (2004) Formation and degradation of poly(D, L-lactide) nanoparticles and their potential application as controllable releasing devices. Macromol Biosci 4(9):901–906

    Article  CAS  Google Scholar 

  11. Moon MH, Kim K, Byun Y, Pyo D (1999) Size characterization of core-shell poly(l-lactide) microspheres by flow/hyperlayer field-flow fractionation. J Liquid Chromatogr R T 22(18):2729–2740

    Article  CAS  Google Scholar 

  12. Contado C, Dalpiaz A, Leo E, Zborowski M, Williams PS (2007) Complementary use of flow and sedimentation field-flow fractionation techniques for size characterizing biodegradable poly(lactic acid) nanospheres. J Chromatogr A 1157(1–2):321–335

    Article  CAS  Google Scholar 

  13. Fraunhofer W, Winter G, Coester C (2004) Asymmetrical flow field-flow fractionation and multiangle light scattering for analysis of gelatin nanoparticle drug carrier systems. Anal Chem 76(7):1909–1920

    Article  CAS  Google Scholar 

  14. Zillies JC, Zwiorek K, Winter G, Coester C (2007) Method for quantifying the PEGylation of gelatin nanoparticle drug carrier systems using asymmetrical flow field-flow fractionation and refractive index detection. Anal Chem 79(12):4574–4580

    Article  CAS  Google Scholar 

  15. Jores K, Mehnert W, Drechsler M, Bunjes H, Johann C, Mader K (2004) Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J Control Release 95(2):217–227

    Article  CAS  Google Scholar 

  16. Kanzer J, Hupfeld S, Vasskog T, Tho I, Holig P, Magerlein M, Fricker G, Brandl M (2010) In situ formation of nanoparticles upon dispersion of melt extrudate formulations in aqueous medium assessed by asymmetrical flow field-flow fractionation. J Pharmaceut Biomed 53(3):359–365

    Article  CAS  Google Scholar 

  17. Kang D, Kim M, Kim S, Oh K, Yuk S, Lee S (2008) Size characterization of drug-loaded polymeric core/shell nanoparticles using asymmetrical flow field-flow fractionation. Anal Bioanal Chem 390(8):2183–2188

    Article  CAS  Google Scholar 

  18. Chuan YP, Fan YY, Lua L, Middelberg AP (2008) Quantitative analysis of virus-like particle size and distribution by field-flow fractionation. Biotechnol Bioeng 99(6):1425–1433

    Article  CAS  Google Scholar 

  19. Lee S, Kwen HD, Lee SK, Nehete SV (2010) Study on elution behavior of poly(amidoamine) dendrimers and their interaction with bovine serum albumin in asymmetrical flow field-flow fractionation. Anal Bioanal Chem 396(4):1581–1588

    Article  CAS  Google Scholar 

  20. Flaim SF (1994) Pharmacokinetics and side effects of perfluorocarbon-based blood substitutes. Artif Cells Blood Substit Immobil Biotechnol 22(4):1043–1054

    Article  CAS  Google Scholar 

  21. Weers JG, Arlauskas RA, Tarara TE, Pelura TJ (2004) Characterization of fluorocarbon-in-water emulsions with added triglyceride. Langmuir 20(18):7430–7435

    Article  CAS  Google Scholar 

  22. Hasegawa U, Sawada S, Shimizu T, Kishida T, Otsuji E, Mazda O, Akiyoshi K (2009) Raspberry-like assembly of cross-linked nanogels for protein delivery. J Control Release 140(3):312–317

    Article  CAS  Google Scholar 

  23. Wang X, Zheng H, Zhu Z, Wei Y, Chen L (2010) Clinical pharmacokinetics of paclitaxel liposome with a new route of administration in human based on the analysis with ultra performance liquid chromatography. J Pharm Sci 99(11):4746–4752

    Article  CAS  Google Scholar 

  24. Moon MH, Giddings JC (1993) Size distribution of liposomes by flow field-flow fractionation. J Pharmaceut Biomed 11(10):911–920

    Article  CAS  Google Scholar 

  25. Lee H, Williams SKR, Allison SD, Anchordoquy TJ (2001) Analysis of self-assembled cationic lipid − DNA gene carrier complexes using flow field-flow fractionation and light scattering. Anal Chem 73(4):837–843

    Article  CAS  Google Scholar 

  26. Citkowicz A, Petry H, Harkins RN, Ast O, Cashion L, Goldmarm C, Bringmarm P, Plummer K, Larsen BR (2008) Characterization of virus-like particle assembly for DNA delivery using asymmetrical flow field-flow fractionation and light scattering. Anal Biochem 376(2):163–172

    Article  CAS  Google Scholar 

  27. Ma PL, Buschmann MD, Winnik FM (2010) Complete physicochemical characterization of DNA/chitosan complexes by multiple detection using asymmetrical flow field-flow fractionation. Anal Chem 82(23):9636–9643

    Article  CAS  Google Scholar 

  28. Scherer C, Noskov S, Utech S, Bantz C, Mueller W, Krohne K, Maskos M (2010) Characterization of polymer nanoparticles by asymmetrical flow field-flow fractionation (AF-FFF). J Nanosci Nanotechnol 10(10):6834–6839

    Article  CAS  Google Scholar 

  29. Moon MH, Park I, Kim YH (1998) Size characterization of liposomes by flow field-flow fractionation and photon correlation spectroscopy – Effect of ionic strength and pH of carrier solutions. J Chromatogr A 813(1):91–100

    Article  CAS  Google Scholar 

  30. Arifin DR, Palmer AF (2003) Determination of size distribution and encapsulation efficiency of liposome-encapsulated hemoglobin blood substitutes using asymmetric flow field-flow fractionation coupled with multi-angle static light scattering. Biotechnol Progr 19(6):1798–1811

    Article  CAS  Google Scholar 

  31. Hupfeld S, Holsaeter AM, Skar M, Frantzen CB, Brandl M (2006) Liposome size analysis by dynamic/static light scattering upon size exclusion-/field-flow-fractionation. J Nanosci Nanotechno 6(9–10):3025–3031

    Article  CAS  Google Scholar 

  32. Hupfeld S, Ausbacher D, Brandl M (2009) Asymmetric flow field-flow fractionation of liposomes: 2. Concentration detection and adsorptive loss phenomena. J Sep Sci 32(20):3555–3561

    Article  CAS  Google Scholar 

  33. Hupfeld S, Ausbacher D, Brandl M (2009) Asymmetric flow field-flow fractionation of liposomes: optimization of fractionation variables. J Sep Sci 32(9):1465–1470

    Article  CAS  Google Scholar 

  34. Korgel BA, van Zanten JH, Monbouquette HG (1998) Vesicle size distributions measured by flow field-flow fractionation coupled with multiangle light scattering. Biophys J 74(6):3264–3272

    Article  CAS  Google Scholar 

  35. Pease LF, Lipin DI, Tsai DH, Zachariah MR, Lua LHL, Tarlov MJ, Middelberg APJ (2009) Quantitative characterization of virus-like particles by asymmetrical flow field-flow fractionation, electrospray differential mobility analysis, and transmission electron microscopy. Biotechnol Bioeng 102(3):845–855

    Article  CAS  Google Scholar 

  36. Liu MK, Giddings JC (1993) Separation and measurement of diffusion coefficients of linear and circular DNAs by flow field-flow fractionation. Macromolecules 26(14):3576–3588

    Article  CAS  Google Scholar 

  37. Yohannes G, Holappa S, Wiedmer SK, Andersson T, Tenhu H, Riekkola ML (2005) Polyelectrolyte complexes of poly(methacryloxyethyl trimethylammonium chloride) and poly(ethylene oxide)-block-poly(sodium methacrylate) studied by asymmetrical flow field-flow fractionation and dynamic light scattering. Anal Chim Acta 542(2):222–229

    Article  CAS  Google Scholar 

  38. Ma PL, Buschmann MD, Winnik FM (2010) One-step analysis of DNA/chitosan complexes by field-flow fractionation reveals particle size and free chitosan content. Biomacromolecules 11(3):549–554

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise M. Winnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Moquin, A., Winnik, F.M. (2012). The Use of Field-Flow Fractionation for the Analysis of Drug and Gene Delivery Systems. In: Williams, S., Caldwell, K. (eds) Field-Flow Fractionation in Biopolymer Analysis. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0154-4_13

Download citation

Publish with us

Policies and ethics