Compactness vs Collusion Resistance in Functional Encryption

Conference paper

DOI: 10.1007/978-3-662-53644-5_17

Volume 9986 of the book series Lecture Notes in Computer Science (LNCS)
Cite this paper as:
Li B., Micciancio D. (2016) Compactness vs Collusion Resistance in Functional Encryption. In: Hirt M., Smith A. (eds) Theory of Cryptography. TCC 2016. Lecture Notes in Computer Science, vol 9986. Springer, Berlin, Heidelberg

Abstract

We present two general constructions that can be used to combine any two functional encryption (FE) schemes (supporting a bounded number of key queries) into a new functional encryption scheme supporting a larger number of key queries. By using these constructions iteratively, we transform any primitive FE scheme supporting a single functional key query (from a sufficiently general class of functions) and has certain weak compactness properties to a collusion-resistant FE scheme with the same or slightly weaker compactness properties. Together with previously known reductions, this shows that the compact, weakly compact, collusion-resistant, and weakly collusion-resistant versions of FE are all equivalent under polynomial time reductions. These are all FE variants known to imply the existence of indistinguishability obfuscation, and were previously thought to offer slightly different avenues toward the realization of obfuscation from general assumptions. Our results show that they are indeed all equivalent, improving our understanding of the minimal assumptions on functional encryption required to instantiate indistinguishability obfuscation.

Copyright information

© International Association for Cryptologic Research 2016

Authors and Affiliations

  1. 1.University of CaliforniaSan DiegoUSA