Skip to main content

Packing and Covering Immersion Models of Planar Subcubic Graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2016)

Abstract

A graph H is an immersion of a graph G if H can be obtained by some subgraph G after lifting incident edges. We prove that there is a polynomial function \(f:{\mathbb {N}}\times {\mathbb {N}}\rightarrow {\mathbb {N}}\), such that if H is a connected planar subcubic graph on \(h>0\) edges, G is a graph, and k is a non-negative integer, then either G contains k vertex/edge-disjoint subgraphs, each containing H as an immersion, or G contains a set F of f(kh) vertices/edges such that \(G\setminus F\) does not contain H as an immersion.

The original version of this chapter was revised: The affiliation of the author has been corrected. The erratum to this chapter is available at 10.1007/978-3-662-53536-3_26

A.C. Giannopoulou—The research of this author has been supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC consolidator grant DISTRUCT, agreement No 648527) and by the Warsaw Center of Mathematics and Computer Science.

O.-j. Kwon—Supported by ERC Starting Grant PARAMTIGHT (No. 280152)

J.-F. Raymond—Supported by the (Polish) National Science Centre grant PRELUDIUM 2013/11/N/ST6/02706.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-662-53536-3_26

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    While we mentioned this definition in the introduction, we now adopt the more technical definition of immersion in terms of immersion models as this will facilitate the presentation of the proofs.

  2. 2.

    All proofs with a \((\star )\) have been omitted from this extended abstract.

References

  1. Belmonte, R., Giannopoulou, A., Lokshtanov, D., Thilikos, D.M.: The Structure of \(W_4\)-Immersion-Free Graphs. CoRR, abs/1602.02002 (2016)

    Google Scholar 

  2. Birmelé, E., Bondy, J.A., Reed, B.A.: The Erdős-Pósa property for long circuits. Combinatorica 27(2), 135–145 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chatzidimitriou, D., Raymond, J.-F., Sau, I., Thilikos, D.M.: Minors in graphs of large \(\theta _r\)-girth. CoRR, abs/1510.03041 (2015)

    Google Scholar 

  4. Chekuri, C., Chuzhoy, J.: Large-treewidth graph decompositions and applications. In: 45st Annual ACM Symposium on Theory of Computing (STOC), pp. 291–300 (2013)

    Google Scholar 

  5. Chekuri, C., Chuzhoy, J.: Polynomial bounds for the grid-minor theorem. CoRR, abs/1305.6577 (2013)

    Google Scholar 

  6. Chuzhoy, J.: Excluded grid theorem: improved and simplified. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, 14–17 June 2015, pp. 645–654 (2015)

    Google Scholar 

  7. Chuzhoy, J.: Improved bounds for the excluded grid theorem. CoRR, abs/1602.02629 (2015)

    Google Scholar 

  8. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 3rd edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  9. Diestel, R., Kawarabayashi, K., Wollan, P.: The Erdős-Pósa property for clique minors in highly connected graphs. J. Comb. Theor. Ser. B 102(2), 454–469 (2012)

    Article  MATH  Google Scholar 

  10. Ding, G., Oporowski, B.: On tree-partitions of graphs. Discrete Math. 149(1–3), 45–58 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Erdős, P., Pósa, L.: On independent circuits contained in a graph. Can. J. Math. 17, 347–352 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ganian, R., Kim, E.J., Szeider, S.: Algorithmic applications of tree-cut width. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9235, pp. 348–360. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  13. Geelen, J., Kabell, K.: The Erdős-Pósa property for matroid circuits. J. Comb. Theor. Ser. B 99(2), 407–419 (2009)

    Article  MATH  Google Scholar 

  14. Halin, R.: Tree-partitions of infinite graphs. Discrete Math. 97(1–3), 203–217 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kakimura, N., Kawarabayashi, K.: Fixed-parameter tractability for subset feedback set problems with parity constraints. Theor. Comput. Sci. 576, 61–76 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kawarabayashi, K.-I., Nakamoto, A.: The Erdös-pósa property for vertex- and edge-disjoint odd cycles in graphs on orientable surfaces. Discrete Math. 307(6), 764–768 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Král’, D., Voss, H.-J.: Edge-disjoint odd cycles in planar graphs. J. Comb. Theor. Ser. B 90(1), 107–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, C.-H.: Packing and covering immersions in 4-edge-connected graphs. CoRR, abs/1505.00867 (2015)

    Google Scholar 

  19. Rautenbach, D., Reed, B.A.: The Erdos-Pósa property for odd cycles in highly connected graphs. Combinatorica 21(2), 267–278 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Raymond, J.-F., Sau, I., Thilikos, D.M.: An edge variant of the Erdős-Pósa property. Discrete Math. 339(8), 2027–2035 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Reed, B.A., Robertson, N., Seymour, P.D., Thomas, R.: Packing directed circuits. Combinatorica 16(4), 535–554 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Robertson, N., Seymour, P.D.: Graph minors. V. excluding a planar graph. J. Comb. Theor. Ser. B 41(2), 92–114 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Seese, D.: Tree-partite graphs and the complexity of algorithms. In: Budach, L. (ed.) Proceedings of Fundamentals of Computation Theory. LNCS, vol. 199, pp. 412–421. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  24. Wollan, P.: The structure of graphs not admitting a fixed immersion. J. Comb. Theor. Ser. B 110, 47–66 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archontia C. Giannopoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Giannopoulou, A.C., Kwon, Oj., Raymond, JF., Thilikos, D.M. (2016). Packing and Covering Immersion Models of Planar Subcubic Graphs. In: Heggernes, P. (eds) Graph-Theoretic Concepts in Computer Science. WG 2016. Lecture Notes in Computer Science(), vol 9941. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53536-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53536-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53535-6

  • Online ISBN: 978-3-662-53536-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics