Skip to main content

New Nonlinear CPRNG Based on Tent and Logistic Maps

  • Chapter
  • First Online:
Complex Systems and Networks

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

This paper is devoted to the design of new chaotic Pseudo Random Number Generator (CPRNG). Exploring several topologies of network of 1-D coupled chaotic mapping, we focus first on two dimensional networks. Two coupled maps are studied: \(\textit{TTL}^{RC}\) non-alternative, and \(\textit{TTL}^{SC}\) alternative. The primary idea of the novel maps has been based on an original coupling of the tent and logistic maps to achieve excellent random properties and homogeneous/uniform/density in the phase plane, thus guaranteeing maximum security when used for chaos base cryptography. In this aim a new nonlinear CPRNG: \(\textit{MTTL}_{2}^{SC}\) is proposed. In addition, we explore higher dimension and the proposed ring coupling with injection mechanism enables to achieve the strongest security requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16, 2129–2151 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ariffin, M.R.K., Noorani, M.S.M.: Modified Baptista type chaotic cryptosystem via matrix secret key. Phys. Lett. A 372, 5427–5430 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banerjee, S., Kastha, D., Das, S., Vivek, G., Grebogi, C.: Robust chaos-the theoretical formulation and experimental evidence, In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS ’99), vol. 5, pp. 293–296 (1999)

    Google Scholar 

  4. Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s definition of chaos. Am. Math. Mon. 99, 332–334 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baptista, M.S.: Cryptography with chaos. Phys. Lett. A 240, 50–54 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dachselt, F., Schwarz, W.S.: Chaos and cryptography. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 48, 1498–1509 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dogan, R., Murgan, A.T., Ortmann, S., Glesner, M.: Searching for robust chaos in discrete time neural networks using weight space exploration. IEEE Int. Conf. Neural Netw. 2, 688–693 (1996)

    Google Scholar 

  8. Dowell, E.H., Pezeshki, C.: On the understanding of chaos in Duffings equation including a comparison with experiment. J. Appl. Mech. 55, 5–9 (1986)

    Article  MathSciNet  Google Scholar 

  9. Feigenbaum, M.J.: The universal metric properties of nonlinear transformations. J. Stat. Phys. 21(6), 669–706 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feki, M.: An adaptive chaos synchronization scheme applied to secure communication. Chaos Solitons Fractals 18(1), 141–148 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frey, D.R., Schwarz, W.: Chaotic digital encoding: an approach to secure communication. IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process. 40, 660–666 (1993)

    Article  Google Scholar 

  12. Garasym, O., Taralova, I., Lozi, R.: Application of nonlinear dynamics to chaotic PRNG design. In: 2014 International Conference on European Conference Iteration Theory (ECIT), vol.20 (2014)

    Google Scholar 

  13. Heidari-Bateni, G., McGillem, C.D.: A chaotic direct-sequence spread-spectrum communication system. IEEE Trans. Commun. 42, 1524–1527 (1994)

    Article  Google Scholar 

  14. Holenstein, T.: Pseudorandom generators from one-way functions: a simple construction for any hardness. In: Theory Cryptography, pp. 443–461 (2009)

    Google Scholar 

  15. Hong, Z., Ling, X.: Generating chaotic secure sequences with desired statistical properties and high security. Int. J. Bifurc. Chaos 7, 205–213 (1997)

    Article  Google Scholar 

  16. Katz, O., Ramon, D.A., Wagner, I.A.: A robust random number generator based on a differential current-mode chaos. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 16, 1677–1686 (2008)

    Article  Google Scholar 

  17. Lanford III, O.E.: Informal remarks on the orbit structure of discrete approximations to chaotic maps. Exp. Math. 7, 317–324 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, C., Chen, G.: Chaos in the fractional order Chen system and its control. Chaos Solitons Fractals 22, 549–554 (2004)

    Article  MATH  Google Scholar 

  19. Li, C.Y., Chen, Y.H., Chang, T.Y., Deng, L.Y., Kiwing, T.: Period extension and randomness enhancement using high-throughput reseeding-mixing PRNG. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(2), 385–389 (2012)

    Article  Google Scholar 

  20. Liebert, W., Schuster, H.G.: Proper choice of the time delay for the analysis of chaotic time series. Phys. Lett. A 142, 107–111 (1989)

    Article  MathSciNet  Google Scholar 

  21. Lozi, R.: Chaotic pseudo random number generators via ultra weak coupling of chaotic maps and double threshold sampling sequences, In: ICCSA 2009, 3rd Conference on Complex Systems and Applications, pp. 20–24 (2009)

    Google Scholar 

  22. Lozi, R.: Emergence of randomness from chaos. Int. J. Bifurc. Chaos 22(02), 1250021 (2012)

    Article  MathSciNet  Google Scholar 

  23. Lozi, R.: Can we trust in numerical computations of chaotic solutions of dynamical systems? Topol. Dyn. Chaos, World Sci. Ser. Nonlinear Sci. Ser. A 84, 63–98 (2013)

    Article  MathSciNet  Google Scholar 

  24. Lozi, R., Cherrier, E.: Noise-resisting ciphering based on a chaotic multi-stream pseudo-random number generator, In: 2011 International Conference for Internet Technology and Secured Transactions (ICITST), pp. 91–96 (2011)

    Google Scholar 

  25. Lozi, R., Taralova, I.: From chaos to randomness via geometric undersampling. ESAIM: Proc Surv. 46, 177–195 (2014)

    Google Scholar 

  26. Ma, H.G., Han, C.Z.: Selection of embedding dimension and delay time in phase space reconstruction. Front. Electr. Electron. Eng. China 1(1), 111–114 (2006)

    Article  MathSciNet  Google Scholar 

  27. May, R.: Stability and Complexity of Models Ecosystems. Princeton University Press, Princeton (1973)

    Google Scholar 

  28. May, R.: Biological populations with overlapping generations: stable points, stable cycles, and chaos. Science 186(4164), 645–647 (1974)

    Article  Google Scholar 

  29. Menezes, A.J., Van Oorschot, P.C.: Handbook of applied cryptography. CRC Press, Boca Raton (1996)

    Book  Google Scholar 

  30. Nejati, H., Beirami, A., Massoud, Y.: A realizable modified tent map for true random number generation. In: Circuits Systems, MWSCAS, vol. 10, pp. 621–624 (2008)

    Google Scholar 

  31. Nillsen, R.: Randomness and recurrence in dynamical systems. AMC 10, 12–30 (2010)

    MATH  Google Scholar 

  32. Noura, H., El Assad, S., Vladeanu, C.: Design of a fast and robust chaos-based cryptosystem for image encryption. In: 2010 8th International Conference on Communications (COMM), pp. 423–426 (2010)

    Google Scholar 

  33. Odibat, Z.M., Corson, N., Aziz-Alaoui, M.A., Bertelle, C.: Synchronization of chaotic fractional-order systems via linear control. Int. J. Bifurc. Chaos 20, 81–97 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pichler, L., Pradlwarter, H.J.: Evolution of probability densities in the phase space for reliability analysis of non-linear structures. Struct. Saf. 31, 316–324 (2009)

    Article  Google Scholar 

  35. Reingold, O.: Theory of cryptography. In: 6th Theory of Cryptography Conference, TCC, 15–17 March (2009)

    Google Scholar 

  36. Rojas, A., Taralova, I., Lozi, R.: New alternate ring-coupled map for multirandom number generation. J. Nonlinear Syst. Appl. 4(1), 64–69 (2013)

    Google Scholar 

  37. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Booz-Allen and Hamilton Inc Mclean Va (2010)

    Google Scholar 

  38. Sato, S., Sano, M., Sawada, Y.: Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems. Prog. Theor. Phys. 77, 1–5 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  39. Singh, A., Gilhotra, R.: Data security using private key encryption system based on arithmetic coding. Int. J. Netw. Secur. Appl. (IJNSA) 3, 58–67 (2011)

    Google Scholar 

  40. Sprott, J.C.: Chaos and Time-Series Analysis, p. 69. Oxford University Press, Oxford (2003)

    Google Scholar 

  41. Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93, 964–979 (2008)

    Article  Google Scholar 

  42. Sundarapandian, V., Pehlivan, I.: Analysis, control, synchronization, and circuit design of a novel chaotic system. Math. Comput. Model. 12, 1904–1915 (2012)

    Article  MathSciNet  Google Scholar 

  43. Thiffeault, J.L., Finn, M.D., Gouillart, E., Hall, T.: Topology of chaotic mixing patterns. Chaos Interdiscip. J. Nonlinear Sci. 18, 033123 (2008)

    Article  MathSciNet  Google Scholar 

  44. Wang, S., Kuang, J., Li, J., Luo, Y., Lu, H., Hu, G.: Chaos-based secure communications in a large community. Phys. Rev. E 66, 065202 (2002)

    Article  Google Scholar 

  45. Wong, W.K., Lee, L.P., Wong, K.W.: A modified chaotic cryptographic method. In: Communications and Multimedia Security Issues of the New Century, pp. 123–126 (2001)

    Google Scholar 

  46. Xiong, J., Yang, Z.: Chaos caused by a topologically mixing map. Int. Cent. Theory Phys. (1991)

    Google Scholar 

  47. Yuan, G., Yorke, J.A.: Collapsing of chaos in one dimensional maps. Phys. D: Nonlinear Phenom. 136, 18–30 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zaher, A.A., Abdulnasser, A.R.: On the design of chaos-based secure communication systems. Commun. Nonlinear Sci. Numer. Simul. 16(9), 3721–3737 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhou, X., Tang, X.: Research and implementation of RSA algorithm for encryption and decryption. In: 2011 6th International Forum on Strategic Technology (IFOST), vol. 1, pp. 1118–1121 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Lozi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Garasym, O., Taralova, I., Lozi, R. (2016). New Nonlinear CPRNG Based on Tent and Logistic Maps. In: Lü, J., Yu, X., Chen, G., Yu, W. (eds) Complex Systems and Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47824-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47824-0_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47823-3

  • Online ISBN: 978-3-662-47824-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics