Skip to main content

Approximation Hardness of the Cross-Species Conserved Active Modules Detection Problem

  • Conference paper
SOFSEM 2015: Theory and Practice of Computer Science (SOFSEM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8939))

  • 1259 Accesses

Abstract

Biological network comparison is an essential but algorithmically challenging approach for the analysis of underlying data. A typical example is looking for certain subgraphs in a given network, such as subgraphs that maximize some function of their nodes’ weights. However, the corresponding maximum-weight connected subgraph (mwcs) problem is known to be hard to approximate. In this contribution, we consider the problem of the simultaneous discovery of maximum weight subgraphs in two networks, whose nodes are matched by a mapping: the maximum-weight cross-connected subgraphs (mwccs) problem. We provide inapproximability results for this problem. These results indicate that the complexity of the problem is conditioned both by the nature of the mapping function and by the topologies of the two networks. In particular, we show that the problem is inapproximable even when the mapping is an injective function and the input graphs are two binary trees. We also prove that it remains hard to approximate when the mapping is a bijective function and the input graphs are a graph and a binary tree. We further analyze a variant of the mwcs problem where the networks’ nodes are assigned both a weight and a contribution value, that we call maximum-weight ratio-bounded connected subgraph (mwrbcs). We provide a polynomial time algorithm for bounded-degree trees and an efficient dynamic programming solution for cycles. These algorithms allow us to derive a polynomial solution for mwccs applicable when (i) mwrbcs is polynomially solvable for one of the graphs and (ii) the set of connected induced subgraphs of the other graph is polynomially enumerable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Álvarez-Miranda, E., Ljubić, I., Mutzel, P.: The maximum weight connected subgraph problem. In: Facets of Combinatorial Optimization, pp. 245–270. Springer (2013)

    Google Scholar 

  2. Berman, P., Karpinski, M.: On some tighter inapproximability results (extended abstract). In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 200–209. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Dittrich, M.T., Klau, G.W., Rosenwald, A., Dandekar, T., Müller, T.: Identifying functional modules in protein–protein interaction networks: an integrated exact approach. Bioinformatics 24(13), i223–i231 (2008)

    Google Scholar 

  4. El-Kebir, M., Soueidan,H., Hume, T., Beisser, D., Dittrich, M., Müller, T., Blin, G., Heringa, J., Nikolski, M., Wessels, L.F.A., Klau, G.W.: Conserved cross-species network modules elucidate Th17 T cell differentiation in human and mouse (under review, 2014)

    Google Scholar 

  5. Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., Lin, J., Minguez, P., Bork, P., von Mering, C., Jensen, L.J.: String v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acid Research 41(D1), 808–815 (2013)

    Article  Google Scholar 

  6. Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.F.: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(suppl. 1), S233–S240 (2002)

    Google Scholar 

  7. Lu, Y., Rosenfeld, R., Nau, G.J., Bar-Joseph, Z.: Cross species expression analysis of innate immune response. Journal of Computational Biology 17(3), 253–268 (2010)

    Article  MathSciNet  Google Scholar 

  8. Mitra, K., Carvunis, A.-R., Ramesh, S.K., Ideker, T.: Integrative approaches for finding modular structure in biological networks. Nature Reviews Genetics 14(10), 719–732 (2013)

    Article  Google Scholar 

  9. Orchard, S., Kerrien, S., Abbani, S., Aranda, B., Bhate, J., Bidwell, S., Bridge, A., Briganti, L., Brinkman, F.S.L., Cesareni, G., Chatr-Aryamontri, A., Chautard, E., Chen, C., Dumousseau, M., Goll, J., Hancock, R.E.W., Hannick, L.I., Jurisica, I., Khadake, J., Lynn, D.J., Mahadevan, U., Perfetto, L., Raghunath, A., Ricard-Blum, S., Roechert, B., Salwinski, L., Stumpflen, V., Tyers, M., Uetz, P., Xenarios, I., Hermjakob, H.: Protein interaction data curation: the international molecular exchange (imex) consortium. Nature Methods 9(4), 345–350 (2012)

    Article  Google Scholar 

  10. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. Journal of Computer and System Sciences 43(3), 425–440 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Staiger, C., Cadot, S., Kooter, R., Dittrich, M., Müller, T., Klau, G.W., Wessels, L.F.A.: A critical evaluation of network and pathway-based classifiers for outcome prediction in breast cancer. PLoS One 7(4), e34796 (2012)

    Google Scholar 

  12. Waltman, P., Kacmarczyk, T., Bate, A.R., Kearns, D.B., Reiss, D.J., Eichenberger, P., Bonneau, R.: Multi-species integrative biclustering. Genome Biology 11(9), R96 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hume, T., Soueidan, H., Nikolski, M., Blin, G. (2015). Approximation Hardness of the Cross-Species Conserved Active Modules Detection Problem. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, JJ., Wattenhofer, R. (eds) SOFSEM 2015: Theory and Practice of Computer Science. SOFSEM 2015. Lecture Notes in Computer Science, vol 8939. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46078-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46078-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46077-1

  • Online ISBN: 978-3-662-46078-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics