Skip to main content

Progress (and Lack Thereof) for Graph Coloring Approximation Problems

  • Conference paper
SOFSEM 2015: Theory and Practice of Computer Science (SOFSEM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8939))

  • 1312 Accesses

Abstract

We examine the known approximation algorithms for the classic graph coloring problem in general graphs, with the aim to extract and restate the core ideas. We also explore a recent edge-weighted generalization motivated by the modeling of interference in wireless networks. Besides examining the current state-of-the-art and the key open questions, we indicate how results for the classical coloring problem can be transferred to the approximation of general edge-weighted graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araujo, J., Bermond, J.-C., Giroire, F., Havet, F., Mazauric, D., Modrzejewski, R.: Weighted improper colouring. Journal of Discrete Algorithms 16, 53–66 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of approximation problems. In: FOCS, pp. 14–23 (1992)

    Google Scholar 

  3. Bang-Jensen, J., Halldórsson, M.M.: A note on vertex coloring edge-weighted digraphs. Preprints on graph, hypergraphs and computing, Institute Mittag-Leffler (2014)

    Google Scholar 

  4. Berger, B., Rompel, J.: A better performance guarantee for approximate graph coloring. Algorithmica 5(4), 459–466 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blum, A., Karger, D.: An \(\tilde O(n^{3/14})\)-coloring algorithm for 3-colorable graphs. Information Processing Letters 61(1), 49–53 (1997)

    Article  MathSciNet  Google Scholar 

  6. Boppana, R.B., Halldórsson, M.M.: Approximating maximum independent sets by excluding subgraphs. In: Gilbert, J.R., Karlsson, R. (eds.) SWAT 1990. LNCS, vol. 447, pp. 13–25. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  7. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. J. Comput. Syst. Sci. 57, 187–199 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Halldórsson, M.M.: A still better performance guarantee for approximate graph coloring. Technical Report 90–44, DIMACS (1990)

    Google Scholar 

  9. Halldórsson, M.M.: A still better performance guarantee for approximate graph coloring. Inform. Process. Lett. 45, 19–23 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Halldórsson, M.M.: Approximation via partitioning. Research Report IS-RR-95-0003F, JAIST (1995)

    Google Scholar 

  11. Halldórsson, M.M., Holzer, S., Mitra, P., Wattenhofer, R.: The power of non-uniform wireless power. In: SODA (2013)

    Google Scholar 

  12. Halldórsson, M.M., Mitra, P.: Wireless Capacity with Oblivious Power in General Metrics. In: SODA (2011)

    Google Scholar 

  13. Halldórsson, M.M., Mitra, P.: Wireless capacity with arbitrary gain matrix. Theor. Comput. Sci. 553, 57–63 (2014)

    Article  MATH  Google Scholar 

  14. Halldórsson, M.M., Wattenhofer, R.: Wireless Communication Is in APX. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 525–536. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Hoefer, M., Kesselheim, T., Vöcking, B.: Approximation algorithms for secondary spectrum auctions. In: SPAA, pp. 177–186 (2011)

    Google Scholar 

  16. Hua, Q.-S., Lau, F.: Exact and approximate link scheduling algorithms under the physical interference model. In: FOMC, pp. 45–54. ACM (2008)

    Google Scholar 

  17. Johnson, D.S.: Worst case behavior of graph coloring algorithms. In: Proc. 5th Southeastern Conf. on Combinatorics, Graph Theory, and Computing. Congressus Numerantium X, pp. 513–527 (1974)

    Google Scholar 

  18. Kesselheim, T.: A Constant-Factor Approximation for Wireless Capacity Maximization with Power Control in the SINR Model. In: SODA (2011)

    Google Scholar 

  19. Kesselheim, T., Vöcking, B.: Distributed contention resolution in wireless networks. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 163–178. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Khot, S., Ponnuswami, A.K.: Better inapproximability results for maxClique, chromatic number and min-3Lin-deletion. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 226–237. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inform. Theory IT-25(1), 1–7 (1979)

    Article  Google Scholar 

  22. Wigderson, A.: Improving the performance guarantee for approximate graph coloring. J. ACM 30(4), 729–735 (1983)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Halldórsson, M.M. (2015). Progress (and Lack Thereof) for Graph Coloring Approximation Problems. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, JJ., Wattenhofer, R. (eds) SOFSEM 2015: Theory and Practice of Computer Science. SOFSEM 2015. Lecture Notes in Computer Science, vol 8939. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46078-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46078-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46077-1

  • Online ISBN: 978-3-662-46078-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics