Skip to main content

Air–Sea Interaction and Horizontal Circulation in the Red Sea

  • Chapter
  • First Online:
The Red Sea

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

This chapter discusses the horizontal circulation of the Red Sea and the surface meteorology that drives it, and recent satellite and in situ measurements from the region are used to illustrate properties of the Red Sea circulation and the atmospheric forcing. The surface winds over the Red Sea have rich spatial structure, with variations in speed and direction on both synoptic and seasonal timescales. Wintertime mountain-gap wind jets drive large heat losses and evaporation at some locations, with as much as 9 cm of evaporation in a week. The near-surface currents in the Red Sea exhibit similarly rich variability, with an energetic and complex flow field dominated by persistent, quasi-stationary eddies, and convoluted boundary currents. At least one quasi-stationary eddy pair is driven largely by winds blowing through a gap in the mountains (Tokar Gap), but numerical simulations suggest that much of the eddy field is driven by the interaction of the buoyancy-driven flow with topography. Recent measurements suggest that Gulf of Aden Intermediate Water (GAIW) penetrates further northward into the Red Sea than previously reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acker J, Leptoukh G, Shen S, Zhu T, Kempler S (2008) Remotely-sensed chlorophyll a observations of the northern Red Sea indicate seasonal variability and influence of coastal reefs. J Mar Syst 69:191–204

    Article  Google Scholar 

  • Biton E, Gildor H, Peltier WR (2008) Red sea during the last glacial maximum: implications for sea level reconstruction. Paleoceanography 23(1). doi:10.1029/2007pa001431

  • Biton E, Gildor H, Trommer G, Siccha M, Kucera M, van der Meer MTJ, Schouten S (2010) Sensitivity of Red Sea circulation to monsoonal variability during the holocene: an integrated data and modeling study. Paleoceanography 25. doi:10.1029/2009pa001876

  • Chen C, Ruixiang L, Pratt L, Limeburner R, Beardsley R, Bower AS, Jiang H, Abualnaja Y, Liu X, Xu Q, Lin H, Lan J, Kim T-W (2014) Process modeling studies of physical mechanisms of the formation of an anticyclonic eddy in the central Red Sea. J Geophys Res Oceans 119. doi:10.1002/2013JC009351

  • Churchill JA, Bower A, McCorkle DC, Abualnaja Y (2015) The transport of nutrient-rich Indian Ocean water through the Red Sea and into coastal reef systems. J Mar Res (in press)

    Google Scholar 

  • Clifford M, Horton C, Schmitz J, Kantha LH (1997) An oceanographic nowcast/forecast system for the Red Sea. J Geophys Res 102:25101–25122

    Article  Google Scholar 

  • Eshel G, Naik N (1997) Climatological coast jet collision, intermediate water formation, and the general circulation of the Red Sea. J Phys Oceanogr 27(7):1233–1257

    Article  Google Scholar 

  • Fairall CW, Bradley EF, Hare JE, Grachev AA, Edson JB (2003) Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J Clim 16:571–591

    Article  Google Scholar 

  • Farrar JT, Lentz S, Churchill J, Bouchard P, Smith J, Kemp J, Lord J, Allsup G, Hosom D (2009) King Abdullah University of Science and Technology (KAUST) mooring deployment cruise and fieldwork report, technical report. Woods Hole Oceanographic Institute, Woods Hole, Mass, 88 pp

    Google Scholar 

  • Hickey B, Goudie AS (2007) The use of TOMS and MODIS to identify dust storm source areas: the Tokar delta (Sudan) and the Seistan basin (south west Asia). In: Goudie AS, Kalvoda J (eds) Geomorphological Variations. P3K, Prague, pp 37–57

    Google Scholar 

  • Jiang H, Farrar JT, Beardsley RC, Chen R, Chen C (2009) Zonal surface wind jets across the Red Sea due to mountain gap forcing along both sides of the Red Sea. Geophys Res Lett 36, L19605

    Article  Google Scholar 

  • Josey S, Kent E, Taylor P (1999) New insights into the ocean heat budget closure problem from analysis of the SOC air–sea flux climatology. J Clim 12:2856–2880

    Article  Google Scholar 

  • Maillard C (1971) Etude hydrologique et dynamique de la Mer Rouge en hiver. Annales de l’Institut océanographique, Paris 498(2):113–140

    Google Scholar 

  • McCreary JP, Shetye SR, Kundu PK (1986) Thermohaline forcing of eastern boundary currents: with application to the circulation off the west coast of Australia. J Mar Res 44:71–92

    Article  Google Scholar 

  • Morcos SA (1970) Physical and chemical oceanography of the Red Sea. Oceanogr Mar Biol Annu Rev 8:73–202

    Google Scholar 

  • Morcos S, Soliman GF (1972) Circulation and deep water formation in the northern Red Sea in winter. UNESCO, L’Oceanographie Physique de la Mer Rouge, pp 91–103

    Google Scholar 

  • Murray SP, Johns W (1997) Direct observations of seasonal exchange through the Bab el Mandeb Strait. Geophys Res Lett 24(21):2557–2560

    Article  Google Scholar 

  • Naval Oceanography Command Detachment (1993) U.S. Navy regional climatic study of the Red Sea and adjacent waters. NAVAIR 50-1C-562. National Oceanic and Atmospheric Administration, Asheville

    Google Scholar 

  • Papadopoulos VP, Abualnaja Y, Josey SA, Bower A, Raitsos DE, Kontoyiannis H, Hoteit I (2013) Atmospheric forcing of the winter air-sea heat fluxes over the northern Red Sea. J Clim 26:1685–1701

    Article  Google Scholar 

  • Patzert WC (1974) Wind-induced reversal in Red Sea circulation. Deep Sea Res 21:109–121

    Google Scholar 

  • Pedgley DE (1974) An outline of the weather and climate of the Red Sea. L’Oceanographie Physique de la Mer Rouge. United National Educational, Scientific, and Cultural Organization, Paris, pp 9–27

    Google Scholar 

  • Phillips OM (1966) On turbulent convection currents and the circulation of the Red Sea. Deep Sea Res 13(6):1149–1160

    Google Scholar 

  • Quadfasel D, Baudner H (1993) Gyre-scale circulation cells in the Red Sea. Oceanol Acta 16:221–229

    Google Scholar 

  • Raitsos DE, Pradhan Y, Brewin RJW, Stenchikov G, Hoteit I (2013) Remote sensing the phytoplankton seasonal succession of the Red Sea. PLoS ONE 8(6):64909

    Article  Google Scholar 

  • Raitsos DE, Hoteit I, Prihartato PK, Chronis T, Triantafyllou G, Abualnaja Y (2011) Abrupt warming of the Red Sea. Geophys Res Lett 38(14), L14601. doi:10.1029/2011GL047984

    Article  Google Scholar 

  • Risien CM, Chelton DB (2008) A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J Phys Oceanogr 38:2379–2413

    Article  Google Scholar 

  • Smeed D (1997) Seasonal variation of the flow in the Strait of Bab al Mandab. Oceanol Acta 20(6):773–781

    Google Scholar 

  • Sofianos SS, Johns WE (2002) An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation: 1. Exchange between the Red Sea and the Indian Ocean. J Geophys Res 107(C11):3196

    Google Scholar 

  • Sofianos SS, Johns WE (2003) An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation: 2. Three dimensional circulation in the Red Sea. J Geophys Res 108(C3):3066

    Article  Google Scholar 

  • Sofianos SS, Johns WE (2007) Observations of the summer Red Sea circulation. J Geophys Res 112:C06025

    Google Scholar 

  • Sofianos SS, Johns WE, Murray SP (2002) Heat and freshwater budgets in the Red Sea from direct observations at Bab el Mandeb. Deep Sea Res Part II 49:1323–1340

    Article  Google Scholar 

  • Souvermezoglou E, Metzl N, Poisson A (1989) Red Sea budgets of salinity, nutrients, and carbon calculated in the Strait of Bab el Mandab during the summer and winter season. J Mar Res 47:441–456

    Article  Google Scholar 

  • Tragou E, Garrett C (1997) The shallow thermohaline circulation of the Red Sea. Deep-Sea Res 44:1355–1376

    Article  Google Scholar 

  • Tragou E, Garrett C, Outerbridge R, Gilman G (1999) The heat and freshwater budgets of the Red Sea. J Phys Oceanogr 29:2504–2522

    Article  Google Scholar 

  • Yao F, Hoteit I, Pratt L, Bower A, Zhai P, Köhl A, Gopalakrishnan G, Rivas D (2014a) Seasonal overturning in the Red Sea: part 1. Model verification and summer circulation. J Geophys Res 119:2238–2262. doi:10.1002/2013JC009331

    Article  Google Scholar 

  • Yao F, Hoteit I, Pratt L, Bower A, Zhai P, Köhl A, Gopalakrishnan G, Rivas D (2014b) Seasonal overturning in the Red Sea: part 2. Winter circulation. J Geophys Res 119:2263–2289. doi:10.1002/2013JC009331

    Article  Google Scholar 

  • Yu L, Weller RA (2007) Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005). Bull Am Meteorol Soc 88:527–539

    Article  Google Scholar 

  • Zhai P, Bower A (2013) The response of the Red Sea to a strong wind jet near the Tokar Gap in summer. J Geophys Res 118(1):421–434

    Article  Google Scholar 

  • Zhang Y, Rossow WB, Lacis AA, Oinas V, Mishchenko MI (2004) Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinements of the radiative transfer model and the input data. J Geophys Res 109:D19105. doi:10.1029/2003JD004457

    Article  Google Scholar 

Download references

Acknowledgments

Data collection during the WHOI-KAUST collaboration was made possible by Award Nos. USA00001, USA00002, and KSA00011 to the WHOI by the KAUST in the Kingdom of Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy S. Bower .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bower, A.S., Farrar, J.T. (2015). Air–Sea Interaction and Horizontal Circulation in the Red Sea. In: Rasul, N., Stewart, I. (eds) The Red Sea. Springer Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45201-1_19

Download citation

Publish with us

Policies and ethics