Skip to main content

The Family Beggiatoaceae

  • Chapter
The Prokaryotes

Abstract

The Beggiatoaceae are widespread and cosmopolitan. Marked concentrations of members of the genus Beggiatoa always coincide with the presence of hydrogen sulfide in the environment. Sulfide concentrations above 20 mg per liter are generally not tolerated by this organism. Traces of oxygen are essential for the development of Beggiatoa. A temperature tolerance between 275°K and 323°K has been noted. Some strains have been isolated from thermal springs. Some of the typical fresh water localities where Beggiatoa can be found are: sulfur springs, ditches in forests with decaying leaves, swampy meadows, and lake estuaries with putrifying seaweeds; usually these habitats have pH values of 7.0 or above and Beggiatoa often occurs together with Thiocystis (Azad and Khera, 1973; Bahr and Schwartz, 1957; Caldwell and Tiedje, 1975; Kolkwitz, 1918; Lackey, 1961; Merkel, 1975; Pringsheim, 1964a; Scotten and Stokes, 1962; Uphof, 1927).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Ankar, S., Jansson, B. 1973. Effect of an unusual natural temperature increase on a Baltic soft-bottom community. Marine Biology 18:9–18.

    Google Scholar 

  • Azad, H. S., Khera, A. K. 1973. Activated sludge. Journal of the Water Pollution Control Federation 45:1041–1054.

    CAS  Google Scholar 

  • Bahr, H., Schwartz, W. 1957. Vergleichende cytologische Untersuchungen an farblosen und fâdigen Schwefelmikroben und an hormogonalen Cyanophyceen. Biologisches Zentralblatt 76:185–203.

    Google Scholar 

  • Bavendamm, W. 1924. Die farblosen und roten Schwefelbakterien des Süß-und Seewassers. Jena: Gustav Fischer Verlag.

    Google Scholar 

  • Buchanan, R. E. 1957. Beggiatoales, pp. 837–853. In: Breed, R. S., Murray, E. G. D., Smith, N. R. (eds.), Bergey’s manual of determinative bacteriology, 7th ed. Baltimore: Williams & Wilkins.

    Google Scholar 

  • Burton, S. D., Lee, J. D. 1978. Improved enrichment and isolation procedures for obtaining pure cultures of Beggiatoa. Applied and Environmental Microbiology 35:614–617.

    PubMed  CAS  Google Scholar 

  • Burton, S.D., Morita, R. Y. 1964. Effect of catalase and cultural conditions on growth of Beggiatoa. Journal of Bacteriology 88:1755–1761.

    PubMed  CAS  Google Scholar 

  • Burton, S. D., Morita, R. Y., Miller, W. 1966. Utilization of acetate by Beggiatoa. Journal of Bacteriology 91:1192–1200.

    PubMed  CAS  Google Scholar 

  • Caldwell, D. E., Caldwell, S. J., Tiedje, J. M. 1975. An ecological study on the sulfur oxidizing bacteria from the littoral zone of a Michigan lake and a sulfur spring in Florida. Plant and Soil 43:101–114.

    Google Scholar 

  • Callis, E., Mannheim, W. 1978. Classification of the Flavo-bacterium-Cytophaga complex on the basis of respiratory quinones and fumarate respiration. International Journal of Systematic Bacteriology 28:14–19.

    Google Scholar 

  • Calvin, M., Bassham, J. A., Benson, A. A., Lynch, V., Quellet, C., Schou, L., Stepka, W., Tolbert, N. 1951. Carbon dioxide assimilation in plants. Symposium of the Society for Experimental Biology 5:284–305.

    CAS  Google Scholar 

  • Cannon, G. C., Strohl, W. R., Larkin, J. M., Shively, J. M. 1979. Cytochromes in Beggiatoa alba. Current Microbiology 2:263–266.

    CAS  Google Scholar 

  • Carr, N. G., Excell, G., Flynn, V., Hallaway, M., Talukdar, S. 1967. Minor quinones of some Myxophyceae. Archives of Biochemistry and Biophysics 120:503–507.

    CAS  Google Scholar 

  • Cataldi, M. S. 1940. Aislamiento de Beggiatoa alba en cultivo pure. Revista del Institute Bacteriologico (D.N.H.) 9:393–434.

    Google Scholar 

  • Chapman, J. A., Salton, M. R. J. 1962. A study of several blue-green algae in the electron microscope. Archiv für Mikrobiologie 44:311–322.

    PubMed  CAS  Google Scholar 

  • Cohn, F. 1865. Über eine farblose Alge. Hedwigia 4:81–85.

    Google Scholar 

  • Costerton, J. W. F. 1960. Cytological study of the Schizophyceae and related organisms. Ph.D. Dissertation. University of Western Ontario, Ontario, Canada.

    Google Scholar 

  • Drawert, H. I., Metzner-Küster, I. 1958. Fluoreszenz- und elektronenmikroskopische Untersuchungen an Beggiatoa alba und Thiothrix nivea. VI. Mitteilung der Reihe: Zellmorphologische und zellphysiologische Studien an Cyanophyceen. Archiv für Mikrobiologie 31:422–434.

    Google Scholar 

  • Drews, G., Nultsch, W. 1962. Spezielle Bewegungsmechanismen von Einzellern (Bakterien, Algen), pp. 876–919. In: Ruhland, W. (ed.), Handbuch der Pflanzenphysiologie, vol. XVII/2. Berlin, Göttingen, Heidelberg: Springer-Verlag.

    Google Scholar 

  • Edelman, M., Swinton, D., Schiff, J. A., Epstein, H. T., Zeldin, B. 1967. Deoxyribonucleic acid of the blue-green algae (Cyanophyta). Bacteriological Reviews 31:315–331.

    PubMed  CAS  Google Scholar 

  • Faust, L., Wolfe, R. S. 1961. Enrichment and cultivation of Beggiatoa alba. Journal of Bacteriology 81:99–106.

    PubMed  CAS  Google Scholar 

  • Fechner, R. 1915. Die Chemotaxis der Oscillarien und ihre Bewegungserscheinungen überhaupt. Zeitschrift für Botanik 7:289–364.

    CAS  Google Scholar 

  • Fenchel, T. M., Riedl, R. J. 1970. The sulphide system: A new biotic community underneath the oxidized layer of marine sand bottoms. Marine Biology 7:255–268.

    CAS  Google Scholar 

  • Fjerdingstad, E. 1971. Microbial criteria of environment. Annual Review of Microbiology 25:563–582.

    PubMed  CAS  Google Scholar 

  • Fogg, G. E., Stewart, W. D. P., Fay, P., Walsby, A. E. 1973. The blue-green algae. New York, London: Academic Press.

    Google Scholar 

  • Glauert, A. M., Thornley, M. J. 1969. The topography of the bacterial cell wall. Annual Review of Microbiology 23:159–198.

    PubMed  CAS  Google Scholar 

  • Guilliermond, A. 1926. Sur la structure des Beggiatoa et leurs relations avec les Cyanophycées. Comptes Rendus des Séances de la Société Biologique 94:579–581.

    Google Scholar 

  • Halfen, L. N. 1973. Gliding motility of Oscillatoria: Ultrastructural and chemical characterization of the fibrillar layer. Journal of Phycology 9:248–253.

    CAS  Google Scholar 

  • Halfen, L. N. 1979. Gliding movements, pp. 250–265. In: Haupt, W., Feinleib, M. E. (eds.), Physiology of movement. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  • Halfen, L. N., Castenholz, R. W. 1970. Gliding in a blue-green alga: A possible mechanism. Nature 225:1163–1165.

    PubMed  CAS  Google Scholar 

  • Halfen, L. N., Castenholz, R. W. 1971. Gliding motility in the blue-green alga Oscillatoria princeps. Journal of Phycology 7:133–145.

    Google Scholar 

  • Hinze, G. 1901. Über den Bau der Zellen von Beggiatoa mirabilis Cohn. Berichte der Deutschen Botanischen Gesellschaft 19:369–374.

    Google Scholar 

  • Hinze, G. 1902. Untersuchungen über den Bau von Beggiatoa mirabilis Cohn. Wissenschaftliche Meeresuntersuchungen, Abteilung Kiel (Neue Folge) 6:187–210.

    Google Scholar 

  • Hinze, G. 1903. Uber Schwefeltröpfchen im Innern von Oscilla-torien. Berichte der Deutschen Botanischen Gesellschaft 21:394–398.

    Google Scholar 

  • Hinze, G. 1913. Beiträge zur Kenntnis der farblosen Schwefelbakterien. Berichte der Deutschen Botanischen Gesellschaft 31:189–202.

    Google Scholar 

  • Hoare, D. S., Hoare, S. L., Moore, R. B. 1967. The photoassimilation of organic compounds by autotrophic blue-green algae. Journal of General Microbiology 49:351–370.

    CAS  Google Scholar 

  • Jarosch, R. 1958. Zur Gleitbewegung der niederen Organismen. Protoplasma 50:277–289.

    Google Scholar 

  • Jarosch, R. 1962. Gliding, pp. 573–581. In: Lewin, R. A. (ed.), Physiology and biochemistry of algae. New York, London: Academic Press.

    Google Scholar 

  • Jarosch, R. 1964. Gleitbewegung und Torsion von Oscillatorien. Österreichische Botanische Zeitschrift 111:143–148.

    Google Scholar 

  • Johnson, F. H., Baker, R. F. 1947. The electron and light microscopy of Beggiatoa. Journal of Cellular and ComChapautive Physiology 30:131–145.

    CAS  Google Scholar 

  • Joshi, M. M., Hollis, J. P. 1976. Rapid enrichment of Beggiatoa from soil. Journal of Applied Bacteriology 40:223–224.

    PubMed  CAS  Google Scholar 

  • Joshi, M. M., Hollis, J. P. 1977. Interaction of Beggiatoa and rice plant detoxification of hydrogen sulfide in the rice rhizo-sphere. Science 195:179–180.

    PubMed  CAS  Google Scholar 

  • Jost, M. 1965. Die Ultrastruktur von Oscillatoria rubens D. C. Archiv für Mikrobiologie 50:211–245.

    Google Scholar 

  • Keil, F. 1912. Beiträge zur Physiologie der farblosen Schwefelbakterien. Beiträge zur Biologie der Pflanzen 11:335–372.

    Google Scholar 

  • Klas, Z. 1937. Über den Formenkreis von Beggiatoa mirabilis. Archiv für Mikrobiologie 8:312–320.

    Google Scholar 

  • Kolkwitz, R. 1897. Über die Krümmung und den Membranbau bei einigen Spaltalgen. Berichte der Deutschen Botanischen Gesellschaft 15:460–467.

    Google Scholar 

  • Kolkwitz, R. 1912. Über die Schwefelbakterie Thioploca ingrica Wislouch. Berichte der Deutschen Botanischen Gesellschaft 30:662–666.

    Google Scholar 

  • Kolkwitz, R. 1918. Über die Schwefelbakterien-Flora des Solgrabens von Artern. Berichte der Deutschen Botanischen Gesellschaft 36:218–224.

    Google Scholar 

  • Kolkwitz, R. 1955. Über die Schwefelbakterie Thioploca ingrica Wislouch. (Zweite Mitteilung). Berichte der Deutschen Botanischen Gesellschaft 68:374–380.

    Google Scholar 

  • Koppe, F. 1924. Die Schlammflora der ostholsteinischen Seen und des Bodensees. Archiv für Hydrobiologie 14:619–672.

    Google Scholar 

  • Kowallik, U., Pringsheim, E. G. 1966. The oxidation of hydrogen sulfide by Beggiatoa. American Journal of Botany 53:801–806.

    CAS  Google Scholar 

  • Kuhl, A. 1962. Zur Physiologie der Speicherung kondensierter anorganischer Phosphate. Vorträge aus dem Gesamtgebiet der Botanik. Neue Folge 1:157–164.

    Google Scholar 

  • Lackey, J. B. 1961. Occurrence of Beggiatoa species relative to pollution. Water and Sewage Works 108:29–31.

    CAS  Google Scholar 

  • Larsen, H. 1960. Chemosynthesis, pp. 613–648. In: Ruhland, W. (ed.), Handbuch der Pflanzenphysiologie, vol. V/2. Berlin, Göttingen, Heidelberg: Springer-Verlag.

    Google Scholar 

  • Lauterborn, R. 1907. Eine neue Gattung der Schwefelbakterien (Thioploca schmidlei nov. gen. nov. spec). Berichte der Deutschen Botanischen Gesellschaft 25:238–242.

    Google Scholar 

  • Leadbetter, E. R. 1974. Family II. Beggiatoaceae, pp. 112–116. In: Buchanan, R. E., Gibbons, N. E. (eds.), Bergey’s manual of determinative bacteriology, 8th ed. Baltimore: Williams & Wilkins.

    Google Scholar 

  • Linton, A. H., Berkeley, R., Madelin, M. F., Round, F. E. 1971. Structure, biology and classification of procaryotic microorganisms, pp. 275–352. In: Hawker, L. E., Linton, A. H. (eds.), Microorganisms: Function, form and environment. New York: American Elsevier.

    Google Scholar 

  • Maier, S., Murray, R. G. E. 1965. The fine structure of Thioploca ingrica and a comparison with Beggiatoa. Canadian Journal of Microbiology 11:645–655.

    PubMed  CAS  Google Scholar 

  • Mandel, M., Lewin, R. A. 1969. Deoxyribonucleic acid base composition of flexibacteria. Journal of General Microbiology 58:171–178.

    PubMed  CAS  Google Scholar 

  • Martin, T. C., Wyatt, J. T. 1974. Extracellular investments in blue-green algae with particular emphasis on the genus Nostoc. Journal of Phycology 10:204–210.

    Google Scholar 

  • Merkel, G. J. 1975. Observations on the attachment of Thiothrix to biological surfaces in activated sludge. Water Research 9:881–885.

    Google Scholar 

  • Moore, B. G., Tischer, R. G. 1965. Biosynthesis of extracellular polysaccharides by the blue-green alga Anabaena flos-aquae. Canadian Journal of Microbiology 11:877–885.

    PubMed  CAS  Google Scholar 

  • Morita, R. Y., Stave, P. W. 1963. Electron micrograph of an ultrathin section of Beggiatoa. Journal of Bacteriology 85:940–942.

    PubMed  CAS  Google Scholar 

  • Nakamura, H. 1937. Über das Auftreten des Schwefelkügelchens im Zellinnern von einigen niederen Algen. Botanical Magazine (Tokyo) 51:529–537.

    Google Scholar 

  • Nultsch, W. 1974. Movements, pp. 864–893. In: Stewart, W. D. P. (ed.), Algal physiology and biochemistry: Oxford: Blackwell.

    Google Scholar 

  • O’Colla, P. S. 1962. Mucilages, pp. 337–356. In: Lewin, R. A. (ed.), Physiology and biochemistry of algae. New York, London: Academic Press.

    Google Scholar 

  • Pearce, L., Leach, C. K., Carr, N. G. 1969. The incomplete tricarboxylic acid cycle in the blue-green alga Anabaena variabilis. Journal of General Microbiology 55:371–378.

    PubMed  CAS  Google Scholar 

  • Pelroy, R. A., Rippka, R., Stanier, R. Y. 1972. Metabolism of glucose by unicellular blue-green algae. Archiv für Mikrobiologie 87:303–322.

    PubMed  CAS  Google Scholar 

  • Pfeffer, W. 1897. Pflanzenphysiologie, vol. I, 2nd ed. Leipzig: Engelmann.

    Google Scholar 

  • Pitts, G., Allam, A. J., Hollis, J.P. 1972. Beggiatoa: Occurrence in the rice rhizosphere. Science 178:990–992.

    PubMed  CAS  Google Scholar 

  • Pringsheim, E. G. 1949. The relationships between bacteria and Myxophyceae. Bacteriological Reviews 13:51–91.

    Google Scholar 

  • Pringsheim, E. G. 1951. The Vitreoscillaceae: A family of colorless, gliding, filamentous organisms. Journal of General Microbiology 5:124–149.

    PubMed  CAS  Google Scholar 

  • Pringsheim, E. G. 1963. Farblose Algen. Stuttgart: Gustav Fischer Verlag.

    Google Scholar 

  • Pringsheim, E. G. 1964a. Heterotrophism and species concept in Beggiatoa. American Journal of Botany 51:898–913.

    Google Scholar 

  • Pringsheim, E. G. 1964b. Phasengrenzschichten als Wohnorte von Mikroorganismen. Nachrichten der Akademie der Wissenschaften in Göttingen. II. Mathematisch-Physikalische Klasse 15:207–209.

    Google Scholar 

  • Pringsheim, E. G. 1967. Die Mixotrophie von Beggiatoa. Archiv für Mikrobiologie 59:247–254.

    PubMed  CAS  Google Scholar 

  • Pringsheim, E. G. 1970. Die Lebensbedingungen des farblosen Schwefelorganismus Beggiatoa. Beiträge zur Biologie der Pflanzen 46:323–336.

    Google Scholar 

  • Pringsheim, E. G., Kowallik, U. 1964. Ist Beggiatoa chemo-autotroph? Die Naturwissenschaften 51:492.

    Google Scholar 

  • Pringsheim, E. G., Wiessner, W. 1963. Minimum requirement for heterotrophic growth and reserve substance in Beggiatoa. Nature 197:102.

    Google Scholar 

  • Rabenhorst, L. 1865. Beggiatoa nivea Rabenhorst, p. 94. In: Flora europaea algarum, vol. 2. Leipzig I: E. Kŭmmer.

    Google Scholar 

  • Santer, M., Vishniac, W. 1955. CO2 incorporation by extracts of Thiobacillus thioparus. Biochimica et Biophysica Acta 18:157–158.

    PubMed  CAS  Google Scholar 

  • Schmid, G. 1923. Das Reizverhalten künstlicher Teilstücke, die Kontraktibilität und das osmotische Verhalten von Oscillatoria jenensis. Jahrbücher für Wissenschaftliche Botanik 62:328–419.

    Google Scholar 

  • Schulz, G. 1955. Bewegungsstudien sowie elektronenmikroskopische Membranuntersuchungen an Cyanophyceen. Archiv für Mikrobiologie 21:335–370.

    PubMed  CAS  Google Scholar 

  • Scotten, H. L., Stokes, J. L. 1962. Isolation and properties of Beggiatoa. Archiv für Mikrobiologie 42:352–368.

    Google Scholar 

  • Skuja, H. 1948. Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symbolae Botanica Upsalensis 9:1–399.

    Google Scholar 

  • Smith, A. J., London, J., Stanier, R. Y. 1967. Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. Journal of Bacteriology 94:972–983.

    PubMed  CAS  Google Scholar 

  • Soriano, S. 1973. Flexibacteria. Annual Review of Microbiology 27:155–170.

    PubMed  CAS  Google Scholar 

  • Stanier, R. Y., Kunisawa, R., Mandel, M., Cohen-Bazire, G. 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews 35:171–205.

    PubMed  CAS  Google Scholar 

  • Strohl, W. R., Larkin, J. M. 1978. Enumeration, isolation, and characterisation of Beggiatoa from freshwater sediments. Applied and Environmental Microbiology 36:755–770.

    PubMed  CAS  Google Scholar 

  • Suzuki, I., Werkman, C. H. 1958a. Chemoautotrophic carbon dioxide fixation by extracts of Thiobacillus thiooxidans. I. Formation of oxaloacetic acid. Archives of Biochemistry 76:103–111.

    CAS  Google Scholar 

  • Suzuki, I., Werkman, C. H. 1958b. Chemoautotrophic carbon dioxide fixation by extracts of Thiobacillus thiooxidans. II. Formation of phosphoglyceric acid. Archives of Biochemistry 76:112–123.

    Google Scholar 

  • Trevisan, V. 1842. Prospetto della flora euganea. Coi Tipi del Seminario, Padova.

    Google Scholar 

  • Trevisan, V. 1845. Nomenclator algorum. Impr du seminaire, Padova.

    Google Scholar 

  • Trudinger, P. A. 1955. Phosphoglycerate formation from pen-tosephosphate by extracts of Thiobacillus denitrificans. Biochimica et Biophysica Acta 18:581–582.

    PubMed  CAS  Google Scholar 

  • Trudinger, P. A. 1956. Fixation of carbon dioxide by extracts of the strict autotroph Thiobacillus denitrificans. Biochemical Journal 64:274–286.

    PubMed  CAS  Google Scholar 

  • Ullrich, H. 1926. Über die Bewegungen von Beggiatoa mirabilis und Oscillatoria jenensis. I. Mitteilung. Planta 2:295–324.

    Google Scholar 

  • Ullrich, H. 1929. Über die Bewegungen der Beggiatoaceen und der Oscillaceen. II. Mitteilung. Planta 9:144–194.

    Google Scholar 

  • Uphof, J. C.Th. 1927. Zur Ökologie der Schwefelbakterien in den Schwefelquellen Mittelfloridas. Archiv für Hydrobiologie 18:71–84.

    Google Scholar 

  • Vaucher, J. P. 1803. Histoire des conferves d’eau douce. Geneva: Paschoud.

    Google Scholar 

  • Weilbull, C. 1960. Movement, pp. 153–205. In: Gunsalus, I. C., Stanier, R. Y. (eds.), The bacteria, vol. I. New York, London: Academic Press.

    Google Scholar 

  • Winogradsky, S. 1887. Über Schwefelbakterien. Botanische Zeitung 45:489–507, 513–523, 529–539, 545–559, 569–575, 585–594, 606–610.

    Google Scholar 

  • Winogradsky, S. 1888. Beiträge zur Morphologie und Physiologie der Bakterien. I. Schwefelbakterien. Leipzig: Felix.

    Google Scholar 

  • Winogradsky, S. 1889. Recherches physiologiques sur les Sulfobactéries. Annales de 1’ Institut Pasteur. A. Annales de Microbiologie 3:49–60.

    Google Scholar 

  • Winogradsky, S. 1922. Eisenbakterien als Anorgoxydanten. Centralblatt für Bakteriologie, Chapausitenkunde und Infektionskrankheiten, Abt. 2 57:1–21.

    CAS  Google Scholar 

  • Wislouch, S. M. 1911. A new sulfur-microorganism from the Neva, Thioploca ingrica Wisl. [translated from Russian. Russki Vrach 10:2102–2104.

    Google Scholar 

  • Wislouch, S.M. 1912. Thioploca ingrica nov. spec. Berichte de Deutschen Botanischen Gesellschaft 30:470–474.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wiessner, W. (1981). The Family Beggiatoaceae. In: Starr, M.P., Stolp, H., Trüper, H.G., Balows, A., Schlegel, H.G. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13187-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13187-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13189-3

  • Online ISBN: 978-3-662-13187-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics