Skip to main content
Book cover

Root Ecology pp 235–255Cite as

Root Exudates: an Overview

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 168))

Abstract

Roots of many weed and crop species contribute biologically active chemicals into the environment known as root exudates. Root exudates are known to influence growth and establishment of crop and weed species, and these are released from living root systems. Many perennial woody and herbaceous plants have deep and extensive root/rhizome subterranean systems, which can produce prolific amounts of root exudates over long periods of time. Root exudates contribute many types of organic compounds to the rhizosphere. In addition to simple and complex sugars and growth regulators, root exudates contain different classes of primary and secondary compounds including amino acids, organic acids, phenolic acids, flavonoids, enzymes, fatty acids, nucleotides, tannins, steroids, terpenoids, alkaloids, polyacetylenes, and vitamins (Table 10.1; Rovira 1969; Schönwitz and Ziegler 1982; Rice 1984; Uren 2000). Uren (2000) suggested that the amount of root exudates produced varies with the plant species, cultivar, the age of the plant, and substrate and stress factors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Appel HM (1993) Phenolics in ecological interactions: the importance of oxidation. J ChemEcol 19:1521–1552

    CAS  Google Scholar 

  • Butler LG (1995) Chemical communication between the parasitic weed Strigaand its crop host: a new dimension in allelochemistry. In: Inderjit, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes and applications. American Chemical Society, Washington, DC, pp 158–168

    Google Scholar 

  • Chang M, Netzley DH, Butler LG, Lynn DG (1986) Chemical regulation of distance: characterization of the first natural host germination stimulant for Striga asiatica. J Am Chem Soc 108:7558–7560

    Google Scholar 

  • Chaves MS, Martinelli JA, Loch LC (1996) Effect of root exudates of soybeans on car-pogenic germination of Whetzelinia sclerotiorumsclerotia. Summa Phytopathol 22:256–258

    Google Scholar 

  • Cheng HH (1995) Characterization of the mechanisms of allelopathy: modeling and experimental approaches. In: Inderjit, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes, and applications. American Chemical Society, Washington, DC, pp 132–141

    Google Scholar 

  • Cook CE, Whichard LD, Wall ME, Egley GH, Coggon P, Luhan PA, McPhail AT (1972) Germination stimulants. I. The structure of strigol. A potent seed germination stimulant for witchweed (Striga luteaLour.). J Am Chem Soc 94:6198–6199

    Article  CAS  Google Scholar 

  • Cunningham SD, Anderson TA, Schwab AP, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agro 56:55–114

    Article  CAS  Google Scholar 

  • Czarnota MA (2001) Sorghum (Sorghumspp.) root exudates: production, localization, chemical composition and mode of action. PhD Thesis, Cornell University, Ithaca, NY

    Google Scholar 

  • Czarnota MA, Paul RN, Dayan F, Nimbal CI, Weston LA (2001) Mode of action, localization of production, chemical nature and activity of sorgoleone: a potent PS II inhibitor produced in Sorghum spp. root exudates. Weed Technol 15(4):813–825

    Article  CAS  Google Scholar 

  • Dakora FD, Joseph CM, Phillips DA (1993a) Alfalfa (Medicago sativaL.) root exudates contain isoflavonoids in the presence of Rhizobium meliloti. Plant Physiol 101:819–824

    PubMed  CAS  Google Scholar 

  • Dakora FD, Joseph CM, Phillips DA (1993b) Common bean root exudates contain elevated levels of daidzein and coumestrol in response to Rhizobiuminoculation. Mol Plant Microbe Interact 6:665–668

    Article  CAS  Google Scholar 

  • Dalton B R (1999) The occurrence and behavior of plant phenolic acids in soil environment and their potential involvement in allelo chemical interference interactions: methodological limitations in establishing conclusive proof of allelopathy. In: Inderjit, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelo-chemical interactions. CRC Press, Boca Raton, pp 57–74

    Google Scholar 

  • Dana MN, Lemer BR (1990) Black walnut toxicity. Purdue University Extension Bulletin. HO-193. West Laffayette, IN

    Google Scholar 

  • Dinkelaker B, Romheld V, Marschner H (1989) Citric acid secretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albusL.). Plant Cell Environ 12:285–292

    Article  CAS  Google Scholar 

  • Dinkelaker B, Hengeler C, Marschner H (1995) Distribution and function of proteoid roots and other root clusters. Bot Acta 108:183–200

    Google Scholar 

  • Einhellig FA (1999) An integrated view of allelo chemicals amid multiple stresses. In: Inderjit, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology: alle-lochemical interactions. CRC Press, Boca Raton, pp 479–494

    Google Scholar 

  • Einhellig FA, Souza IF (1992) Phytotoxicity of sorgoleone found in grain sorghum root exudates. J Chem Ecol 18:1–11

    Article  CAS  Google Scholar 

  • Einhellig FA, Rasmussen JA, Hejl AH, Souza IF (1993) Effects of root exudate sorgoleone on photosynthesis. J Chem Ecol 19:369–375

    Article  CAS  Google Scholar 

  • Elgala AM, Amberger A (1988) Root exudate and the ability of corn to utilize insoluble sources of iron. J Plant Nut 11:677–680

    Article  CAS  Google Scholar 

  • El-Hamalawi ZA, Erwin DC (1986) Components in alfalfa root extract and root exudates that increase oospore germination of Phytophthora megaspermaf. sp. medicaginis. Phytopathology 76:508–513

    Article  CAS  Google Scholar 

  • Fisher RF (1978) Juglone inhibits pine growth under certain moisture regimes. Soil Sci Soc Am J 42:801–803

    Article  CAS  Google Scholar 

  • Flores HE, Weber C, Puffett J (1996) Underground plant metabolism: the biosynthetic potential of roots. In: Waisel Y, Eshel A, Kafkafì U (eds) Plant roots: the hidden half, 2nd edn. Marcel Dekker, New York, pp 931 – 956

    Google Scholar 

  • Gardner WK, Barber DA, Parbery DG (1983) The acquisition of phosphorus by Lupinus albusL.. 3. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced. Plant Soil 170:107–124

    Article  Google Scholar 

  • Geneve RL, Weston LA (1988) Growth reduction of eastern redbud (Cercis canadensisL.) seedlings caused by interaction with a sorghum-sudangrass hybrid (sudex). J Environ Hortic 6:24–26

    Google Scholar 

  • Gershenzon J (1994) Metabolic costs of terpenoids accumulation in higher plants. J Chem Ecol 20:1281–1328

    Article  CAS  Google Scholar 

  • Gonzalez VM, Kazimir J, Nimbai C, Weston LA, Cheniae GM (1997) Inhibition of a photosystem II electron transfer reaction by the natural product sorgoleone. J Agric Food Chem 45:1415–1421

    Article  CAS  Google Scholar 

  • Haller T, Stolp H (1985) Quantitative estimation of root exudation of maize plants. Plant Soil 86:207–216

    Article  CAS  Google Scholar 

  • Hartwig UA, Joseph CM, Phillips DA (1991) Flavonoids released naturally from alfalfa seeds enhance growth rate of Rhizobium meliloti. Plant Physiol 95:797–803

    Article  PubMed  CAS  Google Scholar 

  • Hoffland E, Findenegg GR, Nelemans JA (1989) Solubilization of rock phosphate by rape. Plant Soil 113:161–165

    Article  CAS  Google Scholar 

  • Huang PM, Wang MC, Wang MK (1999) Catalytic transformation of phenolic compounds in the soil. In: Inderjit, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 287–306

    Google Scholar 

  • Hue NV, Craddock GR, Adams F (1986) Effect of organic acids on aluminum toxicity in subsoils. Soil Sci Soc Am J 50:28–34

    Article  CAS  Google Scholar 

  • Inderjit (2001) Soils: environmental effect on allelochemical activity. Agron J 93:79–84

    CAS  Google Scholar 

  • Inderjit, Dakshini KMM (1994) Allelopathic potential of phenolics from the roots of Pluchea lanceolata. Physiol Plant 92:571–576

    Article  CAS  Google Scholar 

  • Inderjit, Dakshini KMM (1999) Bioassays for allelopathy: interactions of soil organic and inorganic constituents. In: Inderjit, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, pp 35–44

    Google Scholar 

  • Inderjit, Del Moral R (1997) Is separating resource competition and allelopathy from allelopathy realistic? Bot Rev 63:221–230

    Article  Google Scholar 

  • Inderjit, Mallik AU (1997) Effect of phenolic compounds on selected soil properties. For Ecol Manag 92:11–18

    Article  Google Scholar 

  • Inderjit, Weston LA (2000) Are laboratory bioassays for allelopathy suitable for prediction of field responses? J Chem Ecol 26:2111–2118

    Article  CAS  Google Scholar 

  • Johnson JF, Allan DL, Vance CP (1994) Phosphorus stress-induced proteoid roots show altered metabolism in Lupinus albus. Plant Physiol 104:657–665

    PubMed  CAS  Google Scholar 

  • Jose S, Gillespie AR (1998) Allelopathy in black walnut (Juglans nigraL.) alley cropping. I. Spatio-temporal variation in soil juglone in a black walnut-corn (Zea maysL.) alley cropping system in the midwestern USA. Plant Soil 203:191–197

    Article  CAS  Google Scholar 

  • Kafkafi U, Bar-Yosef B, Rosenberg R, Sposito G (1988) Phosphorus adsorption by kaoli-nite and montmorillonite: II. Organic anion competition. Soil Sci Soc Am J 52:1585–1589

    Article  CAS  Google Scholar 

  • Kato-Noguchi H, Mizutani J, Hasegawa K (1994) Allelopathy of oats. II. Allelochemical effect of L-tryptophan and its concentration in oat root exudates. J Chem Ecol 20:315–319

    Article  CAS  Google Scholar 

  • Kobayashi A, Kim M J, Kawazu K (1996) Uptake and exudation of phenolic compounds by wheat and antimicrobial components of the root exudate. Z Naturforsch 51:527–533

    CAS  Google Scholar 

  • Kuiters AT, Mulder W (1993) Water-soluble organic matter in forest soils: I. Complexing properties and implications for soil equilibria. Plant Soil 152:215–224

    Article  CAS  Google Scholar 

  • Lehmann RG, Cheng HH, Harsh JB (1987) Oxidation of phenolic acids by iron and manganese oxides. Soil Sci Soc Am J 51:352–356

    Article  CAS  Google Scholar 

  • Long SR (1989) Rhizobium-legume nodulation: life together in the underground. Cell 56:203–214

    Article  PubMed  CAS  Google Scholar 

  • Mahall BE, Callaway RM (1992) Root communication mechanisms and intracommunity distributions of two Mojave Desert shrubs. Ecology 73:2145–2151

    Article  Google Scholar 

  • Marschner H (1998) Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition. Field Crops Res 56:203–207

    Article  Google Scholar 

  • Marschner H, Romheld V (1996) Root-induced changes in the availability of micronutri-ents in the rhizosphere. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 2nd edn. Marcel Dekker, New York, pp 557–579

    Google Scholar 

  • Maxwell CA, Hartwig UA, Joseph CM, Phillips DA (1989) A chalcone and two related flavonoids released from alfalfa roots induce nod genes of Rhizobium meliloti. Plant Physiol 91:842–847

    Article  PubMed  CAS  Google Scholar 

  • Moghimi A, Tate ME, Oades JM (1978) Characterization of rhizosphere products especially 2-ketogluconic acid. Soil Biol Biochem 10:283–287

    Article  CAS  Google Scholar 

  • Mol L (1995) Effect of plant roots on the germination of microsclerotia of Verticillium dahliae: II. Quantitative analysis of the luring effects of crops. Eur J Plant Pathol 101:679–685

    Article  Google Scholar 

  • Mol L, Van-Riessen HW (1995) Effect of plant roots on the germination of microsclerotia of Verticillium dahliae: I. Use of root observation boxes to assess differences among crops. Eur J Plant Pathol 101:673–678

    Article  Google Scholar 

  • Netzley DH, Riopel JL, Ejeta G, Butler LG (1988) Germination stimulants of witchweed (Striga asiatica)from hydrophobic root exudate of sorghum (Sorghum bicolor).WeedSci 36:441–446

    Google Scholar 

  • Nicoliier JF, Pope DF, Thompson AC (1983) Biological activity of durrin and other compounds from Johnsongrass (Sorghum halepense). J Agric Food Chem 31:744–748

    Article  Google Scholar 

  • Nimbal CI, Pedersen JF, Yerkes CN, Weston LA, Weller SC (1996a) Phytotoxicity and distribution of sorgoleone in grain sorghum germplasm. J Agric Food Chem 44:1343–1347

    Article  CAS  Google Scholar 

  • Nimbal CI, Yerkes CN, Weston LA, Weller SC (1996b) Herbicidal activity and site of action of the natural product sorgoleone. Pestic Biochem Physiol 54:73–83

    Article  CAS  Google Scholar 

  • Nishimura H, Kondo Y, Nagasaka T, Satoh A (2000) Allelochemicals in chicory and utilization in processed foods. J Chem Ecol 26:2233–2241

    Article  CAS  Google Scholar 

  • Northup RR, Yu Z, Dahlgren RA, Vogt KA (1995) Polyphenol control of nitrogen release from pine litter. Nature 377:227–229

    Article  CAS  Google Scholar 

  • Perez FJ, Ormeno-Nunez J (1991) Root exudates of wild oats: allelopathic effect on spring wheat. Phytochemistry 30:2199–2202

    Article  CAS  Google Scholar 

  • Poulin MJ, Bel-Rhlid R, Piche Y, Chenevery R (1993) Flavonoid released by carrot (Dau-cus carota)seedlings stimulate hyphal development of vesicular-arbuscular mycor-rhizal fungi in the presence of optimal CO2enrichment. J Chem Ecol 19:2317–2327

    Article  CAS  Google Scholar 

  • Rao JR, Cooper JE (1995) Soybean nodulating bacteria modify nodgene inducers daidzein and genistein to yield aromatic products that can influence gene-inducing activity. Mol Plant-Microbe Interact 8:855–862

    Article  CAS  Google Scholar 

  • Rasmussen JA, Heil AM, Einhellig FA, Thomas TA (1992) Sorgoleone from root exudate inhibits mitochondrial functions. J Chem Ecol 18:197–207

    Article  CAS  Google Scholar 

  • Rice EL (1984) Allelopathy. Academic Press, Orlando, FL

    Google Scholar 

  • Rice EL (1995) Biological control of weeds and plant diseases: advances in applied allelopathy. University of Oklahoma Press, Norman, OK

    Google Scholar 

  • Rovira AD (1969) Plant root exudates. Bot Rev 35:35–59

    Article  CAS  Google Scholar 

  • Ruan Y, Kotraiah V, Straney DC (1995) Flavonoids stimulate spore germination in Fusarium solartipathogenic on legumes in a manner sensitive to inhibitors of cAMP-dependent protein kinase. Mol Plant-Microbe Interact 8:929–938

    Article  CAS  Google Scholar 

  • Scheidemann P, Wetzel A (1997) Identification and characterization of flavonoids in the root exudate of Robinia pseudoacaia. Trees 11:316–321

    Google Scholar 

  • Schlesinger WH (1991) Biogeochemistry: an analysis of global change. Academic Press, San Diego

    Google Scholar 

  • Schönwitz R, Ziegler H (1982) Exudation of water-soluble vitamins and of some carbohydrates by intact roots of maize seedlings (Zea mays)into a mineral nutrient solubilization. Z. Pflanzenphysiol 107:7–14

    Google Scholar 

  • Schultze M, Kondorosi E, Ratet P, Buire M, Kondorosi A (1994) Cell and molecular biology of Rhizobium-plantinteractions. Int Rev Cytol 156:1–75

    Article  CAS  Google Scholar 

  • Shindo H, Kuwatsuka S (1977) Behavior of phenolic substances in decaying process of plants. III. Degradation pathway of phenolic acids. Soil Sci Plant Nutr 21:227–238

    Article  Google Scholar 

  • Smith WH (1976) Character and significance of forest tree root exudates. Ecology 57:324–331

    Article  CAS  Google Scholar 

  • Steele H, Werner D, Cooper JE (1999) Flavonoids in seed and root exudates of Lotus pedunculatusand their biotransformation in Mesorhizobium loti. Physiol Plant 107:251–258

    Article  CAS  Google Scholar 

  • Tan K, Binger A (1986) Effect of humic acid on aluminum toxicity in corn plants. Soil Sci 141:20–25

    Article  CAS  Google Scholar 

  • Tanda AG, Atwal AS, Bajaj YPS (1989) In vitro inhibition of root-knot nematode Meloidogyne incognitaby sesame root exudates and its amino acids. Nematologica 35:115–124

    Article  CAS  Google Scholar 

  • Tang CS, Young CC (1982) Collection and identification of allelopathic compounds from the undisturbed root system of bigalta limpograss (Hemarthria altissima). Plant Physiol 69:155–160

    Article  PubMed  CAS  Google Scholar 

  • Tarafdar JC, Marschner H (1994) Phosphatase activity in the rhizosphere of VA mycor-rhizal wheat supplied with inorganic and organic phosphorus. Soil Biol Biochem 26:387–395

    Article  CAS  Google Scholar 

  • Tawaraya K, Hashimoto K, Wagatsuma T (1998) Effect of root exudate fractions from P-deficient and P-sufficient onion plants on root colonisation by the arbuscular mycor-rhizaal fungus Gigaspora margarita. Mycorrhiza 8:67–70

    Article  CAS  Google Scholar 

  • Vance GF, Mokma DL, Boyd SA (1986) Phenolic compounds in soils of hydrosequences and developmental sequences of spodosols. Soil Sci Soc Am J 50:992–996

    Article  CAS  Google Scholar 

  • Umali-Garcia M, Hubbell DH, Gaskins MH, Dazzo FB (1980) Association of Azospirillumwith grass roots. Appl Environ Microbiol 39:219–226

    PubMed  CAS  Google Scholar 

  • Uren NC (2000) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinto R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 19–40

    Google Scholar 

  • Uselman SM, Quails RG, Thomas RB (2000) Effect of increased atmospheric CO2, temperature and soil N availability on root exudation of dissolved organic carbon by a N-fixing tree (Robinia pseudoacaciaL.). Plant Soil 222:191–202

    Article  CAS  Google Scholar 

  • Weston LA (1996) Utilization of allelopathy for weed management in agroecosystems. Agron J 88:860–866

    Article  Google Scholar 

  • Weston LA, Harmon R, Mueller S (1989) Allelopathic potential of sorghum-sudangrass hybrid (sudex). J Chem Ecol 15:1855–1865

    Article  Google Scholar 

  • Wu H, Haig T, Pratley J, Lemerle D, An M (2000) Distribution and exudation of allelo-chemicals in wheat Triticum aestivum. J Chem Ecol 26:2141–2154

    Article  CAS  Google Scholar 

  • Yang X, Scheffler B, Weston LA (2001) Analysis of gene expression related to sorgoleone production using m-RNA differential display. Proc WSSA 41:37

    Google Scholar 

  • Young CC (1984) Autointoxication in root exudates of Asparagus officinalisL. Plant Soil 82:247–253

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Inderjit, Weston, L.A. (2003). Root Exudates: an Overview. In: de Kroon, H., Visser, E.J.W. (eds) Root Ecology. Ecological Studies, vol 168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09784-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09784-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05520-1

  • Online ISBN: 978-3-662-09784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics