Skip to main content

Hierarchy of Immune Responses to Antigen in the Normal Brain

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 265))

Abstract

For approximately 100 years the brain has been classified as an “immunologically privileged organ” based on the observations that tissue transplants into cerebral cortex survive longer than tissue transplants into conventional peripheral sites (Shirai 1921; Murphy and Sturm 1923; Medawar 1948; Scheinberg et al. 1966). Various conclusions and presumptions were attributed to these studies, including two predominant beliefs that: (1) there is no lymphatic drainage to alert the immune system to the presence of antigen in the brain (afferent arm of immunity), and (2) the tight endothelial junctions of the cerebral vasculature (blood-brain barrier; BBB) prevent blood lymphocytes from facilitating antigen elimination in the brain (efferent arm of immunity; for reviews see Barker and Billingham 1977; Brent 1990; Waksman 1998).

“Indeed, an isolated brain is a piece of biological nonsense as meaningless as an isolated individual.”

Sir Julian Huxley (1887–1975) (from Restak 1979)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383: 787–793

    Article  PubMed  CAS  Google Scholar 

  • Aloisi F, Ria R, Penna G, Adorini L (2000) Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglial and astrocytes. Immunol Today 21:141–147

    Article  PubMed  CAS  Google Scholar 

  • Andersson P-B, Perry VH, Gordon S (1992) Intracerebral injection of proinflammatory cytokines or leukocyte chemotaxins induces minimal myelomonocytic cell recruitment to the parenchyma of the central nervous system. J Exp Med 176:255–259

    Article  PubMed  CAS  Google Scholar 

  • Andjelkovic AV, Spencer DD, Pachter JS (1999) Visualization of chemokine binding sites on human brain microvessels. J Cell Biol 145(2):403–412

    Article  PubMed  CAS  Google Scholar 

  • Barker CF, Billingham RE (1977) Immunologically privileged sites. Adv Immunol 25:1–54

    Article  PubMed  CAS  Google Scholar 

  • Bellinger DL, Feiten SY, Lorton D, Feiten DL (1997) Innervation of lymphoid organs and neuro-transmitter-lymphocyte interactions. In: Keane RW, Hickey WF (eds) Immunology of the nervous system. Oxford University Press, New York, pp 226–329

    Google Scholar 

  • Benveniste EN (1992) Inflammatory cytokines within the central nervous system. Am J Physiol 263 (Cell Physiol 32): 1–6

    Google Scholar 

  • Boulton M, Flessner M, Armstrong D, Hay J, Johnston M (1998) Determination of volumetric cerebrospinal fluid absorption into extracranial lymphatics in sheep. Am J Physiol 274:88–96

    Google Scholar 

  • Bradbury MWB, Cole DF (1980) The role of the lymphatic system in drainage of cerebrospinal fluid and aqueous humor. J Physiol 299:353–365

    PubMed  CAS  Google Scholar 

  • Bradbury MWB, Cserr HF, Westrop RJ (1981) Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 140:F329–F336

    Google Scholar 

  • Bradbury MWB, Westrop RJ (1983) Factors influencing exit of substances from cerebrospinal fluid into deep cervical lymph of the rabbit. J Physiol 339:519–534

    PubMed  CAS  Google Scholar 

  • Brent L (1990) Immunologically privileged sites. In: Johansson BB, Widner OH (eds) Pathophysiology of the blood-brain barrier. Elsevier, New York, pp 383–402

    Google Scholar 

  • Bretscher PA, Wei G, Menon JN, Bielefeldt-Ohmann H (1992) Establishment of stable, cell-mediated immunity that makes “susceptible” mice resistant to Leishmania major. Science 257:539–542

    Article  PubMed  CAS  Google Scholar 

  • Brightman MW (1965) The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. I. Ependymal distribution. J Cell Biol 26:99–123

    Article  PubMed  CAS  Google Scholar 

  • Bronze MS, Dale JB (1993) Epitopes of streptococcal M proteins that evoke antibodies cross-reacting with human brain. J Immunol 151:2820–2828

    PubMed  CAS  Google Scholar 

  • Casley-Smith JR, Foldi-Borcsok E, Foldi M (1976) The prelymphatic pathways of the brain as revealed by cervical lymphatic obstruction and the passage of particles. Br J Exp Pathol 57(2): 179–188

    PubMed  CAS  Google Scholar 

  • Cousins SW, Dix RD (1997) Immunology of the eye. In: Keane RW, Hickey WF (eds) Immunology of the nervous system. Oxford University Press, New York, pp 668–700

    Google Scholar 

  • Cserr HF (1974) Relationship between cerebrospinal fluid and interstitial fluid of brain. Fed Proc 33:2075–2078

    PubMed  CAS  Google Scholar 

  • Cserr HF (1984) Convection of brain interstitial fluid and of cerebrospinal fluid. In: Shapiro K, Marmarou A, Portnoy H (eds) Hydrocephalus. Raven, New York, pp 59–68

    Google Scholar 

  • Cserr HF, Berman BJ (1978) Iodide and thiocyanate efflux from brain following injection into rat caudate nucleus. Am J Physiol 235:F331–F337

    PubMed  CAS  Google Scholar 

  • Cserr HF, Bundegaard M (1984) Blood-brain interfaces in vertebrates: A comparative approach. Am J Physiol 246:277–288

    Google Scholar 

  • Cserr HF, Cooper DN, Suri PK, Patlak CS (1981) Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am J Physiol 240:319–328

    Google Scholar 

  • Cserr HF, Cooper DN, Milhorat TH (1977) Flow of cerebral interstitial fluid as indicated by the removal of extracellular markers from rat caudate nucleus. Exp Eye Res 25:461–473

    Article  PubMed  Google Scholar 

  • Cserr HF, Depasquale M, Harling-Berg CJ, Park JT, Knopf PM (1992) Afferent and efferent arms of the humoral immune response to CSF-administered albumins in a rat model with normal blood-brain barrier permeability. J Neuroimmunol 41:195–202

    Article  PubMed  CAS  Google Scholar 

  • Cserr HF, Knopf PM (1992) Cervical lymphatics, the blood-brain barrier, and immunoreactivity of the brain. Immunol Today 13:507–512

    Article  PubMed  CAS  Google Scholar 

  • Cserr HF, Knopf PM (1997) Cervical lymphatics, the blood-brain barrier and immunoreactivity of the brain. In: Keane RW, Hickey WF (eds) Immunology of the nervous system, New York, Oxford University Press, pp 134–152

    Google Scholar 

  • Edvinsson L, Nielsen KC, Owman C, West HA (1971) Alterations in intracranial pressure, blood-brain barrier, and brain edema after sub-chronic implantation of a cannula into the brain of conscious animals. Acta Physiol Scand 82:527–531

    Article  PubMed  CAS  Google Scholar 

  • Felgenhauer K (1982) Differentiation of the humoral immune response in inflammatory diseases of the central nervous system. J Neurol 228:223–237

    Article  PubMed  CAS  Google Scholar 

  • Fenstermacher JD, Nagaraja TN, Wei L, Ghersi-Egea JF (1999) Surprises and peculiarities in the distribution of material from cerebrospinal fluid to brain tissues and blood. In: Paulsen O, Moos-Knudsen G, Moos T, Svejgaard A (eds) Brain barrier systems. Munksgaard, Copenhagen, pp 494–505

    Google Scholar 

  • Garside P, Ingulli E, Merica RR, Johnson JG, Noëlle RJ, Jenkins MK (1998) Visualization of specific B and T lymphocyte interactions in the lymph node. Science 281:96–99

    Article  PubMed  CAS  Google Scholar 

  • Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immune effector cell of the brain. Brain Res Rev 20:269–287

    Article  PubMed  CAS  Google Scholar 

  • Ghersi-Egea JF, Finnegan W, Chen JL, Fenstermacher JD (1996) Rapid distribution of intraventricularly administered sucrose into cerebrospinal fluid cisterns via subarachnoid velae in the rat. Neuroscience 75:1271–1288

    Article  PubMed  CAS  Google Scholar 

  • Gordon LG, Knopf PM, Cserr HF (1992) Ovalbumin is more immunogenic when introduced into brain or cerebrospinal fluid then into extracerebral sites. J Neuroimmunol 40:81–88

    Article  PubMed  CAS  Google Scholar 

  • Gordon LB, Nolan SC, Cserr HF, Knopf PM, Harling-Berg CJ (1997) Growth of P511 mastocytoma cells in Balb/c mouse brain elicits CTL response without tumor elimination: a new tumor model for regional central nervous system immunity. J Immunol 159:2399–2408

    PubMed  CAS  Google Scholar 

  • Gordon LB, Nolan SC, Ksander BR, Knopf PM, Harling-Berg CJ (1998) Normal cerebrospinal fluid suppresses the in vitro development of cytotoxic T cells: Role of the brain microenvironment in CNS immune regulation. J Neuroimmunol 88:77–84

    Article  PubMed  CAS  Google Scholar 

  • Griffin DE (1981) Immunoglobulins in the cerebrospinal fluid: changes during acute viral encephalitis in mice. J Immunol 126(1):27–31

    PubMed  CAS  Google Scholar 

  • Guery JC, Gabiati F, Smiroldo S, Adorini L (1996) Selective development of T helper Th2 cells induced by continuous administration of low dose soluble proteins to normal and beta2-microglobulin-deficient BALB/c mice. J Exp Med 183:485–497

    Article  PubMed  CAS  Google Scholar 

  • Hallett JJ, Harling-Berg CJ, Knopf PM, Stopa EG, Kiessling (2000) Anti-striatal antibodies in Tourette syndrome cause neuronal dysfunction. J Neuroimmunol 111:195–202

    Article  PubMed  CAS  Google Scholar 

  • Hallett JJ, Poskanzer KE, Knopf PM, Harling-Berg CJ (2000) Subthalamic dysfunction in rats induced by Sydenham’s chorea serum, (submitted)

    Google Scholar 

  • Harling-Berg CJ, Knopf PM, Cserr HF (1991) Myelin basic protein infused into cerebrospinal fluid suppresses experimental autoimmune encephalomyelitis. J Neuroimmunol 35:45–51

    Article  PubMed  CAS  Google Scholar 

  • Harling-Berg CJ, Sobel RA, Knopf PM, Cserr HF (1992) The role of immune cells in the suppression of EAE induced by CSF-infused MBP. Neuroscience Abstracts 2:1011

    Google Scholar 

  • Harling-Berg CJ, Knopf PM, Merriam J, Cserr HF (1989) Role of cervical lymph nodes in the systemic humoral immune response to human serum albumin microinfused into rat CSF. J Neuroimmunol 25:185–193

    Article  PubMed  CAS  Google Scholar 

  • Harling-Berg CJ, Park JT, Knopf PM (1999) Role of the cervical lymphatics in the Th2-type hierarchy of CNS immune regulation. 101:111–127

    CAS  Google Scholar 

  • Hickey WF, Hsu BL, Kimura H (1991) T-lymphocyte entry into the central nervous system. J Neurosci Res 28:254–260

    Article  PubMed  CAS  Google Scholar 

  • Hickey WF, Kimura H (1988) Perivascular microglia are bone marrow derived and present antigen in vivo. Science 239:290–292

    Article  PubMed  CAS  Google Scholar 

  • Hickey WF, Lassmann H, Cross AH (1997) Lymphocyte entry and initiation of inflammation in the CNS. In: Keane RW, Hickey WF (eds) Immunology of the nervous system. Oxford University Press, pp 200–225

    Google Scholar 

  • Hochwald GM, Van Driel A, Robinson ME, Thorbecke GJ (1988) Immune response in draining lymph nodes and spleen after intraventricular injection of antigen. Int J Neurosci 139:299–306

    Article  Google Scholar 

  • Hosken NA, Shibuya K, Heath AW, Murphy KM, O’Garra A (1995) The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor-ab-transgenic model. J Exp Med 182:1579–1584

    Article  PubMed  CAS  Google Scholar 

  • Huang F-P, Platt N, Wykes M, Major JR, Powell TJ, Jenkins CD, MacPherson GG (2000) A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J Exp Med 191:3435–3443

    Google Scholar 

  • Ichimura T, Fraser PA, Cserr HF (1991) Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res 545:103–113

    Article  PubMed  CAS  Google Scholar 

  • Johanson CE (1995) Ventricles and cerebrospinal fluid. In: Conn PM (ed) Neuroscience in medicine. JB Lippincott, Philadelphia, pp 171–197

    Google Scholar 

  • Kiessling LS, Marcotte AC, Culpepper L (1993) Antineuronal antibodies in movement disorders. Pediatrics 92:39–43

    PubMed  CAS  Google Scholar 

  • Ksander BR, Streilein JW (1990) Failure of infiltrating precursor cytotoxic T cells to acquire direct cytotoxic function in immunologically privileged sites. J Immunol 145:2057–2067

    PubMed  CAS  Google Scholar 

  • Kida S, Pantazis A, Weiler RO (1993) CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 19:480–488

    Article  PubMed  CAS  Google Scholar 

  • Kimata H (1996) Vasoactive intestinal peptide differentially modulates human immunoglobulin production. Adv Neuroimmunol 6:107–115

    Article  PubMed  CAS  Google Scholar 

  • Kimata H, Yoshida AC, Ishioka M, Fujimoto K, Furusho K (1996) Vasoactive intestinal peptide enhances immunoglobulin production and growth in human plasma cells via mechanisms that may involve protein kinase C. J Clin Endocrinol Metab 81:3024–3032

    Article  PubMed  CAS  Google Scholar 

  • Knopf PM, Cserr HF, Nolan SC, Wu TY, Harling-Berg CJ (1995) Physiology and immunology of lymphatic drainage of interstitial and cerebrospinal fluid from the brain. Neuropathol Appl Neurobiol 21:175–180

    Article  PubMed  CAS  Google Scholar 

  • Knopf PM, Harling-Berg CJ, Cserr HF, Basu D, Sirulnick EJ, Nolan SC, Park JT, Keir G, Thompson EJ, Hickey WF (1998) Antigen-dependent intrathecal antibody synthesis in the normal rat brain: Tissue entry and local retention of antigen-specific B cells. J Immunol 161:692–701

    PubMed  CAS  Google Scholar 

  • Ksander BR, Streilein JW (1990) Failure of infiltrating precursor cytotoxic T cells to acquire direct cytotoxic function in immunologically privileged sites. J Immunol 145:2057–2063

    PubMed  CAS  Google Scholar 

  • Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglial in the normal adult mouse brain. Neuroscience 39:151–170

    Article  PubMed  CAS  Google Scholar 

  • Leibowitz S, Hughes RAC (1983) The immune response in the central nervous system. In: Arnold E (ed) Immunology of the nervous system. Butler and Tanner, London, pp 20–40

    Google Scholar 

  • Matyszak MK, Lawson LJ, Perry VH, Gordon S (1992) Stromal macrophages of the choroid plexus situated at an interface between the brain and peripheral immune system constitutively express major histocompatibility class II antigens. J Neuroimmunol 40:173–182

    Article  PubMed  CAS  Google Scholar 

  • Medawar PB (1948) Immunity to homologous grafted skin. III. Fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Brit J Exp 29:58–69

    CAS  Google Scholar 

  • Mosmann TR, Coffman RL (1989) Th1 and Th2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7:145–173

    Article  PubMed  CAS  Google Scholar 

  • Murphy JB, Sturm E (1923) Conditions determining the transplantability of tissues in the brain. J Exp Med 38:183–197

    Article  PubMed  CAS  Google Scholar 

  • Nolan SC, Harling-Berg CJ, Knopf PM (1996) CSF-infused protein protein elicits transient DTH priming in Lewis but not Sprague-Dawley rats. FASEB J 10:A1075

    Google Scholar 

  • Oehmichen M (1978) Mononuclear phagocytes in the central nervous system. Springer, New York, pp 65–87

    Book  Google Scholar 

  • Park JT, Harling-Berg CJ, Knopf PM (1995) Characterization of the peripheral immune response to ovalbumin microinfused into the normal mouse brain. Soc Neuro Abst 21:1152

    Google Scholar 

  • Park JT, Harling-Berg CJ, Knopf PM (1996) CSF-administered albumins stimulate antibody but not DTH in Balb/c mice. FASEB J 10:A1075

    Google Scholar 

  • Pascual DW, Bost KL, Xu-Amano J, Kiyono H, McGhee JR (1992) The cytokine- like action of substance P upon B cell differentiation. Reg Immunol 4:100–104

    PubMed  CAS  Google Scholar 

  • Perry VH, Gordon S (1997) Microglia and macrophages. In: Keane RW, Hickey WF (eds) Immunology of the nervous system. Oxford University Press, New York, pp 155–172

    Google Scholar 

  • Prineas JW (1979) Multiple sclerosis: presence of lymphatic capillaries and lymphoid tissue in the brain and spinal chord. Science 203:1123–1125

    Article  PubMed  CAS  Google Scholar 

  • Reiner SL, Locksley RM (1995) The regulation of immunity to Leishmania major. Annu Rev Immunol 13:151–177

    Article  PubMed  CAS  Google Scholar 

  • Restak R (1979) The brain: the last frontier. Double-Day, Inc., New York, p 20

    Google Scholar 

  • Randolph DA, Huang G, Carruthers CJL, Bromley LE, Chaplin DD (1999) The role of CCR7 in TH1 and TH2 cell localization and delivery of B cell help in vivo. Science 286:2159–2162

    Article  PubMed  CAS  Google Scholar 

  • Santos TQ, Valdimarsson H (1982) T-dependent antigens are more immunogenic in the subarachnoid space than in other sites. J Neuroimmunol 2:215–222

    Article  PubMed  CAS  Google Scholar 

  • Scheinberg LC, Kotsilimbas DG, Karpf R, Mayer N (1966) Is the brain “an immunologically privileged site?” Arch Neurol 15:62–67

    Article  PubMed  CAS  Google Scholar 

  • Shirai Y (1921) On the transplantation of the rat sarcoma in adult heterogeneous animals. Jpn Med World I: 15

    Google Scholar 

  • Steffen BJ, Brieier G, Butcher EC, Schulz M, Engelhardt B (1996) ICAM-1, VCAM-1, and MAdCAM-1 are expressed on choroid plexus epithelium but not endothelium and mediate binding of lymphocytes in vitro. Am J Path 148:6, 1819–1838

    PubMed  CAS  Google Scholar 

  • Street NE, Mosmann TR (1991) Functional diversity of T lymphocytes due to secretion of different cytokine patterns. FASEB J 5:171–177

    PubMed  CAS  Google Scholar 

  • Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF (1984) Drainage of interstitial fluid from different regins of rat brain. Am J Physiol 246:F835-F844

    PubMed  CAS  Google Scholar 

  • Tourtellotte WW (1970) On cerebrospinal fluid immunoglobulin-G (IgG) quotients in multiple sclerosis and other diseases: A review and a new formula to estimate the amount of IgG synthesized per day by the central nervous system. J Neurol Sci 10:270–304

    Article  Google Scholar 

  • Vandvik B, Vartdal F, Norrby E (1982) Herpes simplex virus encephalitis: Intrathecal synthesis of oligoclonal virus-specific IgG, IgA and IgM antibodies. J Neurol 228:25–38

    Article  PubMed  CAS  Google Scholar 

  • Waksman BH (1998) Historical perspective and overview. In: Antel J, Birnbaum G, Hartung H (eds) Clinical neuroimmunology. Blackwell, Maiden, MA, pp 391–404

    Google Scholar 

  • Webster’s new universal unabridged dictionary (1996), Barnes and Noble, New York, p 504

    Google Scholar 

  • Weed LH (1914) Studies on cerebrospinal fluid, no. IV. The dual source of cerebrospinal fluid. J Med Res 26:91–113

    Google Scholar 

  • Wekerle H (1997) CD4 effector cells in autoimmune diseases of the central nervous system. In: Keane RW, Hickey WF (eds) Immunology of the nervous system. Oxford University Press, New York, pp 460–492

    Google Scholar 

  • Widner H, Johansson BB, Hallstadious L, Wingardh K, Strand S (1987) Scintigraphic method to quantify the passage from brain parenchyma to the deep cervical lymph nodes in rats. Eur J Nucl Med 13:456–461

    Article  PubMed  CAS  Google Scholar 

  • Widner H, Moller G, Johansson BB (1988) Immune response in deep cervical lymph nodes and spleen in the mouse after antigen deposition in different intracerebral sites. Scand J Immunol 28:563–571

    Article  PubMed  CAS  Google Scholar 

  • Wilbanks GA, Streilein JW (1992) Fluids from immune privilege sites endow macrophages with the capacity to induce antigen-specific immune deviation via a mechanism involving transforming growth factor-beta. Eur J Immunol 22:1031–1036

    Article  PubMed  CAS  Google Scholar 

  • Yahr MD, Goldensohn SS, Kabat EA (1954) Further studies on the gamma globulin content of cerebrospinal fluid in multiple sclerosis and other neurological diseases. Ann New York Acad Sci 58:613–625

    Article  CAS  Google Scholar 

  • Yamada S, DePasquale M, Patlak CS, Cserr HF (1991) Albumin outflow into deep cervical lymph from different regions of rabbit brain. Am J Physiol 261 (Heart Circ Physiol 30):H1197–H1204

    PubMed  CAS  Google Scholar 

  • Zhang X, Giangreco L, Broome HE, Dargan CM, Swain SL (1995) Control of CD4 effector fate: transforming growth factor 1 and interleukin 2 synergize to prevent apoptosis and promote effector expansion. J Exp Med 182:699–709

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harling-Berg, C.J., Hallett, J.J., Park, J.T., Knopf, P.M. (2002). Hierarchy of Immune Responses to Antigen in the Normal Brain. In: Dietzschold, B., Richt, J.A. (eds) Protective and Pathological Immune Responses in the CNS. Current Topics in Microbiology and Immunology, vol 265. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09525-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09525-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07655-8

  • Online ISBN: 978-3-662-09525-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics