Skip to main content

Scanning Probe Microscopy of Ferroelectric Domains near Phase Transitions

  • Chapter
  • 595 Accesses

Part of the book series: NanoScience and Technology ((NANO))

Abstract

In this chapter the results of scanning probe microscopic (SPM) investigations near ferroelectric (ferroic)—paraelectric phase transitions are presented. Submicroscopic investigations of domains near the transition temperature are of fundamental importance both for the basic understanding of the phase transitions itself but also for devices operating near the transition temperatures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Matthias BT, Miller CE, Remeika JP (1956) Ferroelectricity of glycine sulfate. Phys Rev 104: 849

    Article  ADS  Google Scholar 

  2. Nakatani N (1979) Microscopic structure of cleavage surface of ferroelectri tri-glycine sulfate. Jpn J Appl Phys 18: 491–500

    Article  ADS  Google Scholar 

  3. Fousek J, Janovec V (1969) The orientation of domain walls in twinner ferroelectric crystals. J Appl Phys 40: 135–142

    Article  ADS  Google Scholar 

  4. Hatano J, Suda F, Futama H (1976) Orientation of the ferroelectric domain wall in triglycine sulfate crystals. J Phys Soc Japan 41: 188–193

    Article  ADS  Google Scholar 

  5. Nakatani N (1973) Ferroelectric domain structure of tri-glycine sulfate observed using a scanning electron microscope. Jpn J Appl Phys 12: 1723–1728

    Article  ADS  Google Scholar 

  6. Jona F, Shirane G (1962) Ferroelectric Crystals.Pergamon Press, Oxford

    Google Scholar 

  7. Guthner P, Dransfeld K (1992) Local poling of ferroelectric polymers by scanning force microscopy. Appl Phys Lett 61: 1137–1139

    Article  ADS  Google Scholar 

  8. Abplanalp M, Eng LM, Gunter P (1998) Mapping the domain distribution at ferroelectric surfaces by scanning force microscopy. Appl Phys A 66: 5231 — S234

    Article  Google Scholar 

  9. Colla EL, Hong S, Taylor DV, Tagantsev AK, Setter N, No K (1998) Direct observation of region by region suppression of the switchable polarization (fatigue) in Pb(Zr,Ti)O3 thin film capacitors with Pt electrodes. Appl Phys Lett 72: 2763–2765

    Article  ADS  Google Scholar 

  10. Abplanalp M, Gunter P (1998) Imaging of ferroelectric domains with sub micrometer resolution by scanning force microscopy. In: Colla E, Damjanovic D, Setter N (eds) Proc. ISAF XI, IEEE Service Center, Piscataway, NJ, p 423

    Google Scholar 

  11. Haefke H, Luthi RL, Meyer KP, Guntherodt Hi (1994) Static and dynamic structures of ferroelectric domains studied with scanning force microscopy. Ferroelectrics 151: 143–149

    Article  Google Scholar 

  12. Or XK, Likodimos VK, Pardi L, Labardi M, Allegrini M (2000) Scanning force microscopy study of the ferroelectric phase transition in triglycine sulfate. Appl Phys Lett 76: 1321–1323

    Article  ADS  Google Scholar 

  13. Luo EZ, Xie Z, Xu JB, Wilson IH, Zhao LH (2000) In situ observation of the ferroelectric-paraelectric phase transition in a triglycine sulfate single crystal by variable-temperature electrostatic force microscopy: Phys Rev B 61: 203–206

    Google Scholar 

  14. Harnagea C, Pignolet A, Alexe M, Hesse D (2002) Piezoresponse scanning force microscopy: What quantitative information can we really get out of piezoresponse measurements on ferroelectric thin films. Integr Ferroelectrics 44: 113–124

    Google Scholar 

  15. Kalinin SV, Bonnell DA (2002) Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys Rev B 65: art. no. 125408, 1–11

    ADS  Google Scholar 

  16. Guthner P, Glatz-Reichenbach J, Dransfeld K (1991) Investigation of local piezoelectric properties of thin copolymer films. J Appl Phys 69: 7895–7897

    Article  ADS  Google Scholar 

  17. Harnagea C, Pignolet A, Alexe M, Hesse D, Gosele U (2000) Quantitative ferroelectric characterization of single submicron grains in Bi-layered perovskite thin films. Appl Phys A 70: 261–267

    Article  ADS  Google Scholar 

  18. Hidaka T, Maruyama T, Saitoh M, Mikoshiba N, Shimizu M, Shiosaki T, Wills LA, Hiskes R, Dicarolis SA, Amano J (1996) Formation and observation of 50 nm polarized domains in PbZrl_XTiXO3 thin film using scanning probe microscope. Appl Phys Lett 68: 2358–2359

    Article  ADS  Google Scholar 

  19. Abplanalp M, Gunter P (2001) Influence of stress on the domain formation in bariumtitanate films. Ferroelectrics 258: 295–304

    Article  Google Scholar 

  20. Abplanalp M (2001) Piezoresponse scanning force microscopy of ferroelectric domains, Ph.D. thesis, ETH Zurich

    Google Scholar 

  21. Gunter P, Huignard JP (eds) (1988) Photorefractive materials and their applications I, Springer, Berlin

    Google Scholar 

  22. Likodimos V, Labardi M, Orlik XK, Pardi L, Allegrini M (2001) Thermally activated ferroelectric domain growth due to random defects. Phys Rev B 63: art. no. 064104,1— 4

    Google Scholar 

  23. Likodimos V, Labardi A, Allegrini M, Garcia N, Osipov VV (2001) Surface charge compensation and ferroelectric domain structure of triglycine sulfate revealed by voltage-modulated scanning force microscopy. Surf Sci 490: 76–84

    Article  ADS  Google Scholar 

  24. Likodimos V, Labardi M, Allegrini M (2002) Domain pattern formation and kinetics on ferroelectric surfaces under thermal cycling using scanning force microscopy: Phys Rev B 66: art. no. 024104, 1–7

    Google Scholar 

  25. Kalinin SV, Bonnell DA (2000) Effect of phase transition on the surface potential of the BaTiO3 (100) surface by variable temperature scanning surface potential microscopy. J Appl Phys 87: 3950–3957

    Article  ADS  Google Scholar 

  26. Kalinin SV, Bonnell DA (2001) Temperature dependence of polarization and charge dynamics on the BaTiO3 (100) surface by scanning probe microscopy. Appl Phys Lett 78: 1116–1118

    Article  ADS  Google Scholar 

  27. Kalinin SV, Bonnell DA (2001) Local potential and polarization screening on ferroelectric surfaces. Phys Rev B 63: art. no. 125411, 1–13

    ADS  Google Scholar 

  28. Kalinin SV, Johnson CY, Bonnell DA (2002) Domain polarity and temperature induced potential inversion on the BaTiO3(100) surface. J Appl Phys 91: 3816–3823

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abplanalp, M., Zgonik, M., Günter, P. (2004). Scanning Probe Microscopy of Ferroelectric Domains near Phase Transitions. In: Alexe, M., Gruverman, A. (eds) Nanoscale Characterisation of Ferroelectric Materials. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08901-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08901-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05844-8

  • Online ISBN: 978-3-662-08901-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics