Skip to main content

The Long Thread of GFAP in Aging, Steroids, and Synaptic Plasticity

  • Chapter
  • 115 Accesses

Part of the book series: Research and Perspectives in Endocrine Interactions ((RPEI))

Summary

Glial fibrillary acidic protein (GFAP), an intermediate filament of astrocytes, shows progressive increases per cell during normal aging in the absence of neurodegenerative diseases. Increased transcription mediates the increase of GFAP expression. We hypothesize that increased GFAP expression is a factor in age-related impairments of synaptic plasticity, and we are developing an in vitro model to test this hypothesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alonso G, Privat A (1993) Reactive astrocytes involved in the formation of lesional scars differ in the mediobasal hypothalamus and in other forebrain regions. J Neurosci Res 34: 523–538

    Article  PubMed  CAS  Google Scholar 

  • Anderson CP, Rozovsky I, Stone DJ, Song Y, Lopez LM, Finch CE (2002) Aging and increased hypothalamic glial fibrillary acid protein (GFAP) mRNA in F344 female rats.

    Google Scholar 

  • Dissociation of GFAP inducibility from the luteinizing hormone surge. Neuroendocrinology 76: 121–130

    Google Scholar 

  • Bjorklund H, Eriksdotter-Nilsson M, Dahl D, Rose G, Hoffer B, Olson L (1985) Image analysis of GFA-positive astrocytes from adolescence to senescence. Exp Brain Res 58: 163–170

    Article  PubMed  CAS  Google Scholar 

  • Brawer JR, Sonnenschein C (1975) Cytopathological effects of estradiol on the arcuate nucleus of the female rat. A possible mechanism for pituitary tumorigenesis. Am J Anat 144: 57–88

    Google Scholar 

  • Brawer JR, Naftolin F, Martin J, Sonnenschein C (1978) Effects of a single injection of estradiol valerate on the hypothalamic arcuate nucleus and on reproductive function in the female rat. Endocrinology 103: 501–512

    Article  PubMed  CAS  Google Scholar 

  • Brawer JR, Schipper H, Naftolin F (1980) Ovary-dependent degeneration in the hypothalamic arcuate nucleus. Endocrinology 107: 274–279

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Kanski J (2001) Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mech Ageing Dev 122: 945–962

    Article  PubMed  CAS  Google Scholar 

  • Canady KS, Hyson RL, Rubel EW (1994) The astrocytic response to afferent activity blockade in chick nucleus magnocellularis is independent of synaptic activation, age, and neuronal survival. J Neurosci 14: 5973–5985

    PubMed  CAS  Google Scholar 

  • Chaconas G, Finch CE (1973) The effect of ageing on RNA-DNA ratios in brain regions of the C57BL–6J male mouse. J Neurochem 21: 1469–1473

    Article  PubMed  CAS  Google Scholar 

  • Colman PD, Kaplan BB, Osterburg HH, Finch CE (1980) Brain poly(A)RNA during aging: stability of yield and sequence complexity in two rat strains. J Neurochem 34: 335–345

    Article  PubMed  CAS  Google Scholar 

  • Costa S, Planuhenault T, Charriere-Bertrand C, Mouchel Y, Fages C, Juliano S, Lefrancois • Ti: Barlovatz-Meimon G, Tardy M (2002) Astroglial permissivity for neuritic outgrowth in neuron-astrocyte cocultures depends on regulation of laminin bioavailability. Glia 37: 105–113

    Google Scholar 

  • Cutler RG (1975) Transcription of unique and reiterated DNA sequences in mouse liver and brain tissues as a function of age. Exp Gerontol 10: 10–37

    Article  Google Scholar 

  • Day JR, Min BH, Laping NJ, Martin G, 3rd, Osterburg HH, Finch CE (1992) New mRNA probes for hippocampal responses to entorhinal cortex lesions in the adult male rat: a preliminary report. Exp Neurol 117: 97–99

    Article  PubMed  CAS  Google Scholar 

  • Day JR, Laping NJ, Lampert-Etchells M, Brown SA, O’Callaghan JP, McNeill TH, Finch CE (1993) Gonadal steroids regulate the expression of glial fibrillary acidic protein in the adult male rat hippocampus. Neuroscience 55: 435–443

    Article  PubMed  CAS  Google Scholar 

  • de Vellis J (2002) The MRRC at the University of California (UCLA), Los Angeles, CA. Int J Dev Neurosci. 20: 287–288. Review. No abstract available

    Google Scholar 

  • Dubal DB, Zhu H, Yu J, Rau SW, Shughrue PJ, Merchenthaler I, Kindy MS, Wise PM (2001) Estrogen receptor alpha, not beta, is a critical link in estradiol-mediated protection against brain injury. Proc Natl Acad Sci USA 98: 1952–1957

    PubMed  CAS  Google Scholar 

  • Dubey A, Forster MJ, Lal H, Sohal RS (1996) Effect of age and caloric intake on protein oxidation in different brain regions and on behavioral functions of the mouse. Arch Biochem Biophys 333: 189–197

    Article  PubMed  CAS  Google Scholar 

  • Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (19692000). Neurochem Res 25: 1439–1451

    Article  PubMed  CAS  Google Scholar 

  • Finch CE (1990) Longevity, senescence, and the genome. Chicago: University of Chicago

    Google Scholar 

  • Finch CE (1993) Neuron atrophy during aging: programmed or sporadic? Trends Neurosci 16: 104–110

    Article  PubMed  CAS  Google Scholar 

  • Finch CE, Landfield PW (1985) Neuroendocrine and autonomic function in aging mammals. In: Finch CE, Schneider EL (eds) Handbook of the biology of aging. 2nd edition. New York: Van Nostrand, pp 79–90

    Google Scholar 

  • Finch CE, Felicio LS, Mobbs CV, Nelson JF (1984) Ovarian and steroidal influences on neuroendocrine aging processes in female rodents. Endocrinol Rev 5: 467–497

    Article  CAS  Google Scholar 

  • Finch CE, Morgan TE,Xie Z, Stone D, Lanzrein AS, Rosovsky I. (2000) Glial hyperactivity during aging as a neuroinflammatory process.In Patterson P, Kordon C, Christen Y(eds)°Neuroimmune interactions in neurologic and psychiatric disorders. Heidelberg: Springer-Verlag 47–56

    Google Scholar 

  • Forster MJ, Sohal BH, Sohal RS (2000) Reversible effects of long-term caloric restriction on protein oxidative damage. J Gerontol A Biol Sci Med Sci 55: B522–529

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Abreu J, Mendes FA, Onofre GR, De Freitas MS, Silva LC, Moura Neto V, Cavalcante LA (2000) Contribution of heparan sulfate to the non-permissive role of the midline glia to the growth of midbrain neurites. Glia 29: 260–272

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Estrada J, Del Rio JA, Luquin S, Soriano E, Garcia-Segura LM (1993) Gonadal hormones down-regulate reactive gliosis and astrocyte proliferation after a penetrating brain injury. Brain Res 628: 271–278

    Article  PubMed  CAS  Google Scholar 

  • Geinisman Y, Bondareff W, Dodge JT (1977) Partial deafferentation of neurons in the dentate gyrus of the senescent rat. Brain Res 134: 541–545

    Article  PubMed  CAS  Google Scholar 

  • Geinisman Y, Bondareff W, Dodge JT (1978) Hypertrophy of astroglial processes in the dentate gyrus of the senescent rat. Am J Anat 153: 537–543

    Article  PubMed  CAS  Google Scholar 

  • Geinisman Y, Detoledo-Morrell L, Morrell F, Heller RE (1995) Hippocampal markers of age-related memory dysfunction: behavioral, electrophysiological and morphological perspectives. Prog Neurobiol 45: 223–252.

    Article  PubMed  CAS  Google Scholar 

  • Goss JR, Finch CE, Morgan DG (1990) GFAP RNA increases during a wasting state in old mice. Exp Neurol 108: 266–268

    Article  PubMed  CAS  Google Scholar 

  • Goss JR, Finch CE, Morgan DG (1991) Age-related changes in glial fibrillary acidic protein mRNA in the mouse brain. Neurobiol Aging 12: 165–170

    Article  PubMed  CAS  Google Scholar 

  • Hansen LA, Armstrong DM, Terry RD (1987) An immunohistochemical quantification of fibrous astrocytes in the aging human cerebral cortex. Neurobiol Aging 8: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Johnson S, Young-Chan CS, Laping NJ, Finch CE. (1996) Perforant path transection induces complement C9 deposition in hippocampus. Exp Neurol 138: 198–205

    Article  PubMed  CAS  Google Scholar 

  • Kohama SG, Anderson CP, Osterburg HH, May PC, Finch CE (1989) Oral administration of estradiol to young C57BL/6J mice induces age-like neuroendocrine dysfunctions in the regulation of estrous cycles. Biol Reprod 41: 227–232

    Article  PubMed  CAS  Google Scholar 

  • Krekoski CA, Parhad IM, Fung TS, Clark AW (1996) Aging is associated with divergent effects on Nf-L and GFAP transcription in rat brain. Neurobiol Aging 17: 833–841

    Article  PubMed  CAS  Google Scholar 

  • Krohn K, Rozovsky I, Wals P, Teter B, Anderson CP, Finch CE (1999) Glial fibrillary acidic protein transcription responses to transforming growth factor-betal and interleukin-lbeta are mediated by a nuclear factor-1-like site in the near-upstream promoter. J Neurochem 72: 1353–1361

    Article  PubMed  CAS  Google Scholar 

  • Landfield PW, Rose G, Sandles L, Wohlstadter TC, Lynch G (1977) Patterns of astroglial hypertrophy and neuronal degeneration in the hippocampus of ages, memory-deficient rats. J Gerontol 32: 3–12

    Article  PubMed  CAS  Google Scholar 

  • Landfield PW (1978) An endocrine hypothesis of brain aging and studies on brain-endocrine correlations and monosynaptic neurophysiology during aging. Adv Exp Med Biol 113: 179–199

    Article  PubMed  CAS  Google Scholar 

  • Landfield PW, Waymire JC, Lynch G (1978) Hippocampal aging and adrenocorticoids: quantitative correlations. Science 202: 1098–1102

    Article  PubMed  CAS  Google Scholar 

  • Landfield PW, Baskin RK, Pitler TA (1981a) Brain aging correlates: retardation by hormonal-pharmacological treatments. Science 214: 581–584

    Article  PubMed  CAS  Google Scholar 

  • Landfield PW, Braun LD, Pitler TA, Lindsey JD, Lynch G (1981b) Hippocampal aging in rats: a morphometric study of multiple variables in semithin sections. Neurobiol Aging 2: 265–275

    Article  PubMed  CAS  Google Scholar 

  • Laping NJ, Teter B, Nichols NR, Rozovsky I, Finch CE (1994a) Glial fibrillary acidic protein: regulation by hormones, cytokines, and growth factors. Brain Pathol 4: 259–275

    Article  PubMed  CAS  Google Scholar 

  • Laping NJ, Morgan TE, Nichols NR, Rozovsky I, Young-Chan CS, Zarow C, Finch CE (1994b) Transforming growth factor-beta 1 induces neuronal and astrocyte genes: tubulin alpha 1, glial fibrillary acidic protein and clusterin. Neuroscience 58: 563–572

    Article  PubMed  CAS  Google Scholar 

  • Laping NJ, Teter B, Anderson CP, Osterburg HH, O’Callaghan JP, Johnson SA, Finch CE (1994c) Age-related increases in glial fibrillary acidic protein do not show proportionate changes in transcription rates or DNA methylation in the cerebral cortex and hippocampus of male rats. J Neurosci Res. 39: 710–717

    Article  PubMed  CAS  Google Scholar 

  • Lee CK, Weindruch R, Prolla TA (2000) Gene-expression profile of the ageing brain in mice. Nature Genet 25: 294–297

    Article  PubMed  CAS  Google Scholar 

  • Lefrancois T, Fages C, Peschanski M, Tardy M (1997) Neuritic outgrowth associated with astroglial phenotypic changes induced by antisense glial fibrillary acidic protein ( GFAP) mRNA in injured neuron-astrocyte cocultures. J Neurosci 17: 4121–4128

    Google Scholar 

  • Lindsey JD, Landfield PW, Lynch G (1979) Early onset and topographical distribution of hypertrophied astrocytes in hippocampus of aging rats: a quantitative study. J Gerontol 34: 661–671

    Article  PubMed  CAS  Google Scholar 

  • May PC, Lampert-Etchells M, Johnson SA, Poirier J, Masters JN, Finch CE (1990) Dynamics of gene expression for a hippocampal glycoprotein elevated in Alzheimer’s disease and in response to experimental lesions in rat. Neuron 5: 831–839

    Article  PubMed  CAS  Google Scholar 

  • McMillian MK, Thai L, Hong JS, O’Callaghan JP, Pennypacker KR (1994) Brain injury in a dish• a model for reactive gliosis. Trends Neurosci 17: 138–142

    Article  PubMed  CAS  Google Scholar 

  • Morgan TE, Rozovsky I, Goldsmith SK, Stone DJ, Yoshida T, Finch CE (1997) Increased transcription of the astrocyte gene GFAP during middle-age is attenuated by food restriction: implications for the role of oxidative stress. Free Rad Biol Med 23: 524–548

    Article  PubMed  CAS  Google Scholar 

  • Morgan TE, Xie Z, Goldsmith S, Yoshida T, Lanzrein AS, Stone D, Rozovsky I, Perry G, Smith MA, Finch CE (1999) The mosaic of brain glial hyperactivity during normal ageing and its attenuation by food restriction. Neuroscience 89: 687–699

    Article  PubMed  CAS  Google Scholar 

  • Nichols NR, Masters JN, May PC, de Vellis J, Finch CE (1989) Corticosterone-induced responses in rat brain RNA are also evoked in hippocampus by acute vibratory stress. Neuroendocrinology 49: 40–46

    Article  PubMed  CAS  Google Scholar 

  • Nichols NR, Day JR, Laping NJ, Johnson SA, Finch CE (1993) GFAP mRNA increases with age in rat and human brain. Neurobiol Aging 14: 421–429

    Article  PubMed  CAS  Google Scholar 

  • Nichols NR, Finch CE (1994) Gene products of corticosteroid action in hippocampus. Ann N Y Acad Sci. 30: 145–154

    Google Scholar 

  • Nichols NR, Finch CE, Nelson JF (1995) Food restriction delays the age-related increase in GFAP mRNA in rat hypothalamus. Neurobiol Aging 16: 105–110

    Article  PubMed  CAS  Google Scholar 

  • Patterson P, Kordon C, Christen Y, (eds) (2000) Neuro-immune interactions in neurologic and psychiatric disorders. Heidelberg: Springer-Verlag

    Google Scholar 

  • Poirier J, Hess M, May PC, Finch CE (1991a) Astrocytic apolipoprotein E mRNA and GFAP mRNA in hippocampus after entorhinal cortex lesioning. Brain Res Mol Brain Res 11: 97–106

    CAS  Google Scholar 

  • Poirier J, Hess M, May PC, Finch CE (199 lb) Cloning of hippocampal poly(A) RNA sequences that increase after entorhinal cortex lesion in adult rat. Brain Res Mol Brain Res 9: 191–195

    Google Scholar 

  • Rasmussen T, Schliemann T, Sorensen JC, Zimmer J, West MJ (1996) Memory impaired aged rats: no loss of principal hippocampal and subicular neurons. Neurobiol Aging 17: 143–147

    Article  PubMed  CAS  Google Scholar 

  • Rozovsky I, Laping NJ, Krohn K, Teter B, O’Callaghan JP, Finch CE (1995) Transcriptional regulation of glial fibrillary acidic protein by corticosterone in rat astrocytes in vitro is influenced by the duration of time in culture and by astrocyte-neuron interactions. Endocrinology 136: 2066–2073

    Article  PubMed  CAS  Google Scholar 

  • Rozovsky I, Finch CE, Morgan TE (1998) Age-related activation of microglia and astrocytes: in vitro studies show persistent phenotypes of aging, increased proliferation, and resistance to down-regulation. Neurobiol Aging 19: 97–103

    Article  PubMed  CAS  Google Scholar 

  • Rozovsky I, Wei M, Stone DJ, Zanjani H, Anderson CP, Morgan TE, Finch CE (2002) Estradiol ( E2) enhances neurite outgrowth by repressing glial fibrillary acidic protein expression and reorganizing laminin. Endocrinology 143: 636–646

    Google Scholar 

  • Schipper HM (1996) Astrocytes, brain aging, and neurodegeneration. Neurobiol Aging 17: 467–480

    Article  PubMed  CAS  Google Scholar 

  • Schipper H, Brawer JR, Nelson JF, Felicio LS, Finch CE (1981) Role of the gonads in the histologic aging of the hypothalamic arcuate nucleus. Biol Reprod 25: 413–419

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273: 59–63

    Article  PubMed  CAS  Google Scholar 

  • Stone DJ, Rozovsky I, Morgan TE, Anderson CP, Finch CE (1998a) Increased synaptic sprouting in response to estrogen via an apolipoprotein E-dependent mechanism: implications for Alzheimer’s disease. J Neurosci 18: 3180–3185

    PubMed  CAS  Google Scholar 

  • Stone DJ, Song Y, Anderson CP, Krohn KK, Finch CE, Rozovsky I (1998b) Bidirectional transcription regulation of glial fibrillary acidic protein by estradiol in vivo and in vitro. Endocrinology 139: 3202–3209

    Article  PubMed  CAS  Google Scholar 

  • Stone DJ, Rozovsky I, Morgan TE, Anderson CP, Lopez LM, Shick J, Finch CE (2000) Effects of age on gene expression during estrogen-induced synaptic sprouting in the female rat. Exp Neurol 165: 46–57

    Article  PubMed  CAS  Google Scholar 

  • Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40: 133–139

    Article  PubMed  Google Scholar 

  • Van Remmen H, Ward WF, Sabia RV, Richardson A (1994) Effect of age on gene expression and protein degradation. In: Masoro E (ed) Handbook of physiology. Volume on Aging. New York: Oxford University Press, pp 171–234

    Google Scholar 

  • Weindruch RH, Walford R (1988) The retardation of aging and disease by dietary restriction. Springfield IL, Thomas

    Google Scholar 

  • Weissmuller G, Garcia-Abreu J, Mascarello Bisch P, Moura Neto V, Cavalcante LA (2000) Glial cells with differential neurite growth-modulating properties probed by atomic force microscopy. Neurosci Res 38: 217–220

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Goldsmith SK, Morgan TE, Stone DJ, Finch CE (1996) Transcription supports age- related increases of GFAP gene expression in the male rat brain. Neurosci Lett 215: 107–110

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Finch, C.E., Morgan, T.E., Rozovsky, I., Wei, M. (2004). The Long Thread of GFAP in Aging, Steroids, and Synaptic Plasticity. In: Chanson, P., Epelbaum, J., Lamberts, S., Christen, Y. (eds) Endocrine Aspects of Successful Aging: Genes, Hormones and Lifestyles. Research and Perspectives in Endocrine Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07019-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07019-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07359-5

  • Online ISBN: 978-3-662-07019-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics