Skip to main content

Colonial Growth of Fungi

  • Chapter

Part of the book series: The Mycota ((MYCOTA,volume 8))

Abstract

In a previous review in Volume I of this Series, entitled “The Mycelium as an Integrated Entity”, Trinci et al. (1994) treated hyphae and the mycelium from the viewpoint of growing and branching hyphae and linked these and other cellular processes to growth kinetics of the mycelium. The current chapter will focus on this integrated entity — the manifestation of fungal colony growth as the growth of a multicellular integrated organism — and consider how this organism has been studied in different growth systems and how it coordinates activities such as nutrient uptake and reallocation. The discussion revolves around plate cultures of fungi but soil plates more reminiscent of fungi in nature are also examined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews JH (1998) Bacteria as modular organisms. Annu Rev Microbiol 52:105–126

    Article  PubMed  CAS  Google Scholar 

  • Axelrod DE (1972) Kinetics of differentiation of conidiophores and conidia by colonies of Aspergillus nidulans, J Gen Microbiol 73:181–184

    PubMed  CAS  Google Scholar 

  • Axelrod DE, Gealt M, Pastushok M (1973) Gene control of developmental competence in Aspergillus nidulans, Dev Biol 34:9–15

    Article  PubMed  CAS  Google Scholar 

  • Bartnicki-Garcia S (1990) Role of vesicles in apical growth and a new mathematical model of hyphal morphogenesis. In: Heath IB (ed) Tip growth in plant and fungal cells. Academic Press, London, pp 211–232

    Google Scholar 

  • Beadle GW, Tatum EL (1941) Genetic control of biochemical reactions in Neurospora, Proc Natl Acad Sci USA 27:499–506

    Article  PubMed  CAS  Google Scholar 

  • Ben-Jacob E, Cohen I, Gutnick GL (1998) Cooperative organization of bacterial colonies: from genotype to morphotype. Annu Rev Microbiol 52:779–806

    Article  PubMed  CAS  Google Scholar 

  • Bending GD, Read DR (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. The foraging behavior of ectomycorrhizal mycelium and the translocation of nutrients from exploited organic matter. New Phytol 130:401–409

    Article  CAS  Google Scholar 

  • Boddy L (1999) Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environments. Mycologia 91:13–32

    Article  Google Scholar 

  • Bolton RG, Boddy L (1993) Characterization of the spatial aspects of foraging mycelial cord systems using fractal geometry. Mycol Res 97:762–768

    Article  Google Scholar 

  • Brown AJP, Gow NAR (1999) Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol 7:333–338

    Article  PubMed  CAS  Google Scholar 

  • Buller AHR (1931) Social organisation in Coprinus sterquilinus and other fungi. In: Researches on Fungi IV Hafner, New York, pp 139–186

    Google Scholar 

  • Butler GM (1984) Colony ontogeny in basidiomycetes. In: Jennings DH, Rayner ADM (eds) The Ecology and the Physiology of the Fungal Mycelium. Cambridge Univ Press, Cambridge, pp 53–71

    Google Scholar 

  • Cairney JWG (1992) Translocation of solutes in ectomycorrhizal and saprotrophic rhizomorphs. Mycol Res 96:135–141

    Article  CAS  Google Scholar 

  • Cairney JWG, Burke RM (1996) Physiological heterogeneity within fungal mycelia: an important concept for a functional understanding of the ectomycorrhizal symbiosis. New Phytol 134:685–695

    Article  Google Scholar 

  • Cooper KM, Tinker PB (1981) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. IV. Effect of environmental variables on movement of phosphorus. New Phytol 88:327–339

    Article  CAS  Google Scholar 

  • Davidson FA (1998) Modelling the qualitative response of fungal mycelia to heterogeneous environments. J Theor Biol 195:281–292

    Article  PubMed  Google Scholar 

  • Davidson FA, Olsson S (2000) Translocation induced outgrowth of fungi in nutrient-free environments. J Theor Biol 205:73–84

    Article  PubMed  CAS  Google Scholar 

  • Davidson FA, Sleeman BD, Rayner ADM, Crawford JW, Ritz K (1996) Context-dependent macroscopic patterns in growing and interacting mycelial networks. Proc R Soc Lond B Biol Sci 263:873–880

    Article  Google Scholar 

  • Dawson CG, Rayner ADM, Boddy L (1988) The form and outcome of mycelial interactions involving cord-forming decomposer basidiomycete in homogeneous and heterogeneous environments. New Phytol 109:423–432

    Article  Google Scholar 

  • Donnelly DP, Boddy L (1997) Development of mycelial systems of Stropharia caerulea and Phanaerochaete velutina on soil: effect of temperature and water potential. Mycol Res 101:705–713

    Article  Google Scholar 

  • Donnelly DP, Boddy L (1998) Repeated damage results in polarised development of foraging mycelial systems of Phanerochaete velutina, FEMS Microbiol Ecol 26:101–108

    Article  CAS  Google Scholar 

  • Donnelly DP, Wilkins MF, Boddy L (1995) An integrated image analysis approach for determining biomass, radial extent and box-count fractal dimension in macroscopic mycelial systems. Binary 7:19–28

    Google Scholar 

  • Donnelly DP, Boddy L, Wilkins MF (1999) Image analysis — a valuable tool for recording and analysing development of mycelial systems. Mycologist 13:120–125

    Article  Google Scholar 

  • Finlay RD, Read DJ (1986) The structure and function of the vegetative mycelium of ectomycorrhizal plants. I. Translocation of 14C-labelled carbon between plants interconnected by a common mycelium. New Phytol 103:143–156

    Article  Google Scholar 

  • Gealt M, Axelrod AE (1974) Coordinate regulation of enzyme inducibility and developmental competence in Aspergillus nidulans, Dev Biol 41:224–232

    Article  PubMed  CAS  Google Scholar 

  • Gorbushina AA, Krumbein WE, von Ossietzky C (1999) The poikilotrophic micro-organism and its environment. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Kluwer, Dordrecht, pp 175–185

    Chapter  Google Scholar 

  • Gort AS, Imlay JA (1998) Balance between endogenous superoxide stress and antioxidant defences. J Bacteriol 180:1402–1410

    PubMed  CAS  Google Scholar 

  • Hansberg W, De-Groot H, Helmut S (1993) Reactive oxygen species associated with cell differentiation in Neurospora crassa, Free Radic Biol Med 14:287–293

    Article  PubMed  CAS  Google Scholar 

  • Hawksworth DL, Kirk PM, Sutton BC, Pegler DN (1995) Ainsworth and Bisby’s dictionary of fungi, 8th edn. CAB International, Wallingford

    Google Scholar 

  • Hughes CL, Boddy L (1994) Translocation of 32P between wood resources recently colonised by mycelial cord systems of Phanaerochaete velutina, FEMS Microbiol Ecol 14:201–212

    Article  CAS  Google Scholar 

  • Jennings DH (1994) Translocation in mycelia. In: Wessels JGH, Meinhardt F (eds) The Mycota, vol I. Growth, differentiation and sexuality. Springer, Berlin Heidelberg New York, pp 163–173

    Google Scholar 

  • Kotov V, Reshetnikov S (1990) A stochastic model for early mycelial growth. Mycol Res 94:577–586

    Article  Google Scholar 

  • Lilly WW, Higgins SM, Wallweber GJ (1990) Uptake and translocation of 2-aminoisobutyric acid by Schizophyllum-commune, Exp Mycol 14:169–177

    Article  CAS  Google Scholar 

  • Lilly WW, Wallweber GJ, Higgins SM (1991) Proteolysis and amino acid recycling during nitrogen deprivation in Schizophyllum-commune, Curr Microbiol 23:27–32

    Article  CAS  Google Scholar 

  • Lindahl BJ, Stenlid J, Olsson S, Finlay R (1999) Translocation of 32P between interacting mycelia of Hypholoma fasciculare and ectomycorrhizal fungi in microcosm systems. New Phytol 144:183–193

    Article  CAS  Google Scholar 

  • Mihail JD, Obert M, Bruhn JN, Taylor SJ (1995) Fractal geometry of diffuse mycelia and rhizomorphs of Armillaria species. Mycol Res 99:81–88

    Article  Google Scholar 

  • Navarro-Bordonaba J, Adams TH (1994) Development of conidia and fruiting bodies in ascomycetes. In: Wessels JGH, Meinhardt F (eds) The Mycota, vol I. Growth, differentiation and sexuality. Springer, Berlin Heidelberg New York, pp 333–350

    Google Scholar 

  • Obert M (1994) Microbial growth patterns: fractal and kinetic characteristics of patterns generated by a computer model to simulate fungal growth. Fractals 1:354–374

    Article  Google Scholar 

  • Obert M, Pfeifer P, Sernetz M (1990) Microbial growth patterns described by fractal geometry. J Bacteriol 172:1180–1185

    PubMed  CAS  Google Scholar 

  • Olsson S (1994) Uptake of glucose and phosphorus by growing colonies of Fusarium oxysporum as quantified by image analysis. Exp Mycol 18:33–47

    Article  CAS  Google Scholar 

  • Olsson S (1995) Mycelial density profiles of fungi on heterogeneous media and their interpretation in terms of nutrient reallocation patterns. Mycol Res 99:143–153

    Article  Google Scholar 

  • Olsson S (1999) Nutrient translocation and electric signalling in mycelia. In: Gow NAR, Robson GD, Gadd GM (eds) The Fungal Colony. Cambridge Univ Press, Cambridge, pp 25–48

    Chapter  Google Scholar 

  • Olsson S, Gray SN (1998) Patterns and dynamics of 32P-phosphate and labelled 2-aminoisobutyric acid (14C-AIB) translocation in intact basidiomycete mycelia. FEMS Microbiol Ecol 26:109–120

    Article  CAS  Google Scholar 

  • Olsson S, Jennings DH (1991a) Evidence for diffusion being the mechanism of translocation in the hyphae of three molds. Exp Mycol 15:303–309

    Google Scholar 

  • Olsson S, Jennings DH (1991b) A glass fiber filter technique for studying nutrient uptake by fungi: the technique used on colonies grown on nutrient gradients of carbon and phosphorus. Exp Mycol 15:292–301

    Article  CAS  Google Scholar 

  • Olsson S, Nordbring-Hertz B (1986) Microsclerotial germination of Verticillium dahliae as affected by rape rhizosphere. FEMS Microbiol Ecol 31:293–300

    Article  Google Scholar 

  • Pastushok M, Axelrod DE (1976) Effect of glucose, ammonium and media maintenance on the time of conidio-phore initiation by surface colonies of Aspergillus nidulans, J Gen Microbiol 94:221–224

    PubMed  CAS  Google Scholar 

  • Persson C, Olsson S, Jansson H-B (2000) Growth of Arthrobotrys superba from a birch wood resource base into soil determined by radioactive tracing. FEMS Microbiol Ecol 31:47–51

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Martín J, Uría JA, Johnson AD (1999) Phenotypic switching in Candida albicans is controlled by a SIR2 gene. EMBO J 18:2580–2592

    Article  PubMed  Google Scholar 

  • Pirt SJ (1967) A kinetic study of the mode of growth of surface colonies of bacteria and fungi. J Gen Microbiol 66:137–143

    Google Scholar 

  • Prosser JI, Trinci APJ (1979) A model for hyphal growth and branching. J Gen Microbiol 111:153–164

    PubMed  CAS  Google Scholar 

  • Radford DR, Challacombe SJ, Walter JD (1994) A scanning electron microscopy investigation of the structure of colonies of different morphologies produced by phenotypic switching of Candida albicans, J Med Microbiol 40:416–423

    Article  PubMed  CAS  Google Scholar 

  • Ramsdale M (1999) Circadian rhythms in filamentous fungi. In: Gow NAR, Robson GD, Gadd GM (eds) The fungal colony. Cambridge Univ Press, Cambridge, pp 75–107

    Chapter  Google Scholar 

  • Rayner ADM (1991) The challenge of the individualistic mycelium. Mycologia 83:48–71

    Article  Google Scholar 

  • Rayner ADM (1996) Interconnectedness and individualism in fungal mycelia. In: Sutton BC (ed) A century of mycology. Cambridge Univ Press, Cambridge, pp 193–232

    Google Scholar 

  • Rayner ADM, Griffith GS, Ainsworth AM (1995) Mycelial interconnectedness. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman and Hall, London, pp 21–40

    Chapter  Google Scholar 

  • Regalado CM, Crawford JW, Ritz K, Sleeman BD (1996) The origins of spatial heterogeneity in vegetative mycelia: a reaction-diffusion model. Mycol Res 100:1138–1142

    Article  Google Scholar 

  • Ritz K (1995) Growth responses of some soil fungi to spatially heterogeneous nutrients. FEMS Microbiol Ecol 16:269–280

    Article  CAS  Google Scholar 

  • Ritz K, Crawford JW (1990) Quantification of the fractal nature of colonies of Trichoderma viride, Mycol Res 94:1138–1141

    Article  Google Scholar 

  • Ritz K, Crawford JW (1999) Colony development in nutritionally heterogeneous environments. In: Gow NAR, Robson GD, Gadd GM (eds) The Fungal Colony. Cambridge Univ Press, Cambridge, pp 49–74

    Chapter  Google Scholar 

  • Ritz K, Millar SM, Crawford JW (1996) Detailed visualisation of hyphal distribution in fungal mycelia growing in heterogeneous nutritional environments. J Microbiol Methods 25:23–28

    Article  Google Scholar 

  • Robson GD, Bell SD, Kuhn PJ, Trinci APJ (1987) Glucose and penicillin concentrations in the medium below fungal colonies. J Gen Microbiol 133:361–367

    PubMed  CAS  Google Scholar 

  • Robson GD, Kuhn PJ, Trinci APJ (1991) Antagonism by sugars of the effects of validamycin a on growth and morphology of Rhizoctonia cerealis, Mycol Res 95:129–134

    Article  CAS  Google Scholar 

  • Roze LV, Linz JE (1998) Lovastatin triggers an apoptosis-like cell death process in the fungus Mucor racemosus, Fungal Genet Biol 25:119–133

    Article  PubMed  CAS  Google Scholar 

  • Ryan FJ, Beadle GW, Tatum EL (1943) The tube method of measuring the growth rate of Neurospora, Am J Bot 30:784–799

    Article  Google Scholar 

  • Schütte KH (1956) Translocation in the fungi. New Phytol 55:164–182

    Article  Google Scholar 

  • Sessom DB, Lilly WW (1986) Derepressible proteolytic activity in homokaryotic hyphae of Schizophyllum commune, Exp Mycol 10:294–300

    Article  Google Scholar 

  • Shapiro JA (1998) Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol 52:81–104

    Article  PubMed  CAS  Google Scholar 

  • Shepherd VA, Orlovich DA, Ashford AE (1993a) A dynamic continuum of pleiomorphic tubules and vacuoles in growing hyphae of a fungus. J Cell Sci 104:495–507

    Google Scholar 

  • Shepherd VA, Orlovich DA, Ashford AE (1993b) Cell-to-cell transport via motile tubules in growing hyphae of a fungus. J Cell Sci 105:1173–1178

    PubMed  Google Scholar 

  • Slutsky B, Buffo J, Soll DR (1985) High-frequency switching of colony morphology in Candida albicans, Science 230:666–669

    Article  PubMed  CAS  Google Scholar 

  • Thrane C, Olsson S, Nielsen TH, SØrensen J (1999) Vital fluorescent stains for detection of fungal stress in Pythium ultimum and Rhizoctonia solani challenged with viscosinamide from Pseudomonas fluorescence DR54. FEMS Microbiol Ecol 30:11–23

    Article  CAS  Google Scholar 

  • Timonen S, Finlay RD, Olsson S, Söderström B (1996) Dynamics of phosphorus translocation in intact ectomycorrhizal systems: non-destructive monitoring using beta-scanner. FEMS Microbiol Ecol 19:171–180

    CAS  Google Scholar 

  • Toledo VJA, Hansberg W (1994) Enzyme inactivation related to a hyperoxidant state during conidiation of Neurospora crassa, Microbiology 140:2391–2397

    Article  PubMed  CAS  Google Scholar 

  • Toledo VPR, Hansberg W (1995) Redox inbalance at the start of each morphogenetic step of Neurospora crassa conidiation. Arch Biochem Biophys 319:519–524

    Article  PubMed  CAS  Google Scholar 

  • Trinci APJ, Wiebe MG, Robson GD (1994) The mycelium as an integrated entity. In: Wessels JGH, Meinhardt F (eds) The Mycota, vol I. Growth, differentiation and sexuality. Springer, Berlin Heidelberg New York, pp 175–194

    Google Scholar 

  • Trinci APJ, Bocking S, Swift RJ, Withers JM, Robson GD, Weibe MG (1999) Growth, branching and enzyme production by filamentous fungi in submerged culture. In: Gow NAR, Robson GD, Gadd GM (eds) The Fungal Colony. Cambridge Univ Press, Cambridge, pp 108–125

    Chapter  Google Scholar 

  • Wells JM, Boddy L, Donnelly DP (1998a) Temporary phosphorus partitioning in mycelial systems of the cord-forming basidiomycete Phanerochaete velutina, New Phytol 140:283–293

    Article  Google Scholar 

  • Wells JM, Boddy L, Donnelly DP (1998b) Wood decay and phosphorus translocation by the cord-forming basidiomycete Phanaerochaete velutina: the significance of local nutrient supply. New Phytol 138:607–617

    Article  CAS  Google Scholar 

  • Wiebe MG, Trinci APJ, Cunliffe B, Robson GD, Oliver SG (1991) Appearance of morphological colonial mutants in glucose-limited continuous flow cultures of Fusarium graminearum a3–5. Mycol Res 95:1284–1288

    Article  Google Scholar 

  • Wiebe MG, Robson GD, Trinci APJ, Oliver SG (1992) Characterization of morphological mutants generated spontaneously in glucose-limited continuous flow cultures of Fusarium graminearum a3–5. Mycol Res 96:555–562

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Olsson, S. (2001). Colonial Growth of Fungi. In: Howard, R.J., Gow, N.A.R. (eds) Biology of the Fungal Cell. The Mycota, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06101-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06101-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06103-9

  • Online ISBN: 978-3-662-06101-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics