Skip to main content

Finite Volume Method

  • Chapter

Abstract

The Finite Volume Method (FVM) was introduced into the field of computational fluid dynamics in the beginning of the seventies (McDonald 1971, Mac-Cormack and Paullay 1972). From the physical point of view the FVM is based on balancing fluxes through control volumes, i. e. the Eulerian concept is used (see section 1.1.4). The integral formulation of conservative laws are discretized directly in space. From the numerical point of view the FVM is a generalization of the FDM in a geometric and topological sense, i. e. simple finite volume schemes can be reduced to finite difference schemes. The FDM is based on nodal relations for differential equations, whereas the FVM is a discretization of the governing equations in integral form. The Finite Volume Method can be considered as specific subdomain method as well. FVM has two major advantages: First, it enforces conservation of quantities at discretized level, i. e. mass, momentum, energy remain conserved also at a local scale. Fluxes between adjacent control volumes are directly balanced. Second, finite volume schemes takes full advantage of arbitrary meshes to approximate complex geometries. Experience shows that non-conservative schemes are generally less accurate than conservative ones, particularly in the presence of strong gradients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Baker (1983): Finite element computational fluid mechanics, McGraw-Hill, New York.

    MATH  Google Scholar 

  2. Chung T J (1978): Finite element analysis in fluid dynamics, McGraw-Hill, New York.

    MATH  Google Scholar 

  3. Cole J D (1951): Q Appl Mech, 1:171–219.

    Google Scholar 

  4. Cuthill EH & MacKee J (1969): Reducing the bandwidth of a sparse symmetric matrices, in Proc 24th Nat Conf Assoc Comp Mech, ACM Publ:157-172.

    Google Scholar 

  5. Diersch H-J G (1985): Modellierung und numerische Simulation geohydrodynamischer Transportprozesse, Habilitationsschrift, Akademie der Wissenschaften der DDR, Berlin.

    Google Scholar 

  6. Diersch H-J G (2001): Feflow — Reference Manual, WASY — Institute for Water Resources Planning and Systems Research, Berlin.

    Google Scholar 

  7. Donea J (1984): A Taylor-Galerkin method for convective transport problems, Int J Numer Meth Engng, 20:101–119.

    Article  MATH  Google Scholar 

  8. Fletcher C A J (1990): Computational techniques for fluid dynamics, Springer series in Computational Physics (two volumes), Springer-Verlag.

    Google Scholar 

  9. Gibbs N E, Poole W G & Stockmeyer P K (1976): An algorithm for reducing the bandwidth and profile of a sparse matrix. SIAM J Num Anal, 13:236–250.

    Article  MathSciNet  MATH  Google Scholar 

  10. Habbar A (1995): Vergleich verschiedener Krylov-Verfahren für allgemeine reguläre und sehr große lineare Gleichungssysteme, Institut für Strömungsmechanik und Elektr. Rechnen im Bauwesen, Universität Hannover.

    Google Scholar 

  11. Hackbusch W (1991): Iterative Lösung schwachbesetzter Gleichungssysteme, Teubner-Verlag, Stuttgart.

    MATH  Google Scholar 

  12. Helmig R (1997): Multiphase flow and transport in the subsurface, Springer-Verlag.

    Google Scholar 

  13. Hopf E (1950): Communications Pure Appl Mathematics, 3:201–230.

    Article  MathSciNet  MATH  Google Scholar 

  14. Huyakorn P S & Pinder G F (1983): Computational methods in subsurface flow, Academic Press, New York — London.

    MATH  Google Scholar 

  15. Kaiser R, Kolditz O & Zielke W (1998): Automatic grid adaption for subsurface fluid flow problems — Application to fractured-porous reservoirs, In: Proc. XII international Conference on Computational Methods in Water Resources, pp 125-132, Crete, Greece, June 15–19, 1998.

    Google Scholar 

  16. Kasper H, Kosakowski G, Rother T, Thorenz C, Kolditz O & Taniguchi T (1998): Development of a 3-D CAD system for numerical analysis of subsurface flow and transport, In: Proc. 6th Int Conf on Num. Grid Generation in Comp. Field Sim., pp 683-694. Greenwich, UK, July 06-09, 1998.

    Google Scholar 

  17. Kinzelbach W (1992): Numerische Methoden zur Modellierung des Transport von Schadstoffen im Grundwasser, Oldenbourg-Verlag.

    Google Scholar 

  18. Knabner P & Angermann L (2000): Numerik partieller Differentialgleichungen, Springer-Verlag.

    Google Scholar 

  19. Kolditz O, Habbar A, Kaiser R, Rother T & Thorenz C (2001): ROCK-FLOW — Theory and Users Manual, Release 3.5, Groundwater Modeling Group, Institute of Fluid Mechanics, University of Hannover, Internet publication, (www.rockflow.de).

    Google Scholar 

  20. Launder BE & Spalding D B (1974): The numerical computation of turbulent flows, Comp. Methods Apll. Mech. Eng., 3:269–289.

    Article  MATH  Google Scholar 

  21. Lax PD & Wendroff B (1960): Systems of conservation laws, Comm Pure and Applied Mathematics, 13:217–237.

    Article  MathSciNet  MATH  Google Scholar 

  22. Lewis R W & Schrefler B A (1998): The finite element method in the static and dynamic deformation and consolidation of porous media, Wiley & Sons.

    Google Scholar 

  23. MacCormack R W & Paullay A J (1972): Computational efficiency achieved by time splitting of finite difference operators, AIAA paper 72-154, San Diego.

    Google Scholar 

  24. McDonald P W (1971): The computation of transonic flow through two-dimensional gas turbine cascades, ASME paper 71-GT-89.

    Google Scholar 

  25. Meyer A (1990): A parallel preconditioning conjugate gradient method using domain decomposition and inexact solvers on each subdomain. Computing, vol 45.

    Google Scholar 

  26. Mitchell A R & Griffiths D F (1980): The finite difference method in partial differential equations, Wiley, Chichester.

    MATH  Google Scholar 

  27. Noye J (1984): Numerical solution of differential equations, North-Holland, Amsterdam.

    Google Scholar 

  28. Pinder G F & Gray W G (1977): Finite element simulation in surface and subsurface hydrology, Academic Press, New York-London.

    Google Scholar 

  29. Schwetlick H & Kretschmar H (1991): Numerische Verfahren für Naturwissenschaftler und Ingenieure, Fachbuch-Verlag, Leipzig.

    MATH  Google Scholar 

  30. Turner M J, Clough R W, Martin H C & Topp L P (1956): Stiffness and deflection analysis of complex structures, J Aeron Soc, 23: 805.

    MATH  Google Scholar 

  31. Versteeg H K & Malalasekera W (1995): An introduction to computational fluid dynamics: The finite volume method, Longman Scientific & Technical.

    Google Scholar 

  32. Wriggers P (2001): Nichtlineare Finite Elemente Methoden, Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolditz, O. (2002). Finite Volume Method. In: Computational Methods in Environmental Fluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04761-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04761-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07683-1

  • Online ISBN: 978-3-662-04761-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics