Skip to main content

Porous Convection, the Chebyshev Tau Method, and Spurious Eigenvalues

  • Chapter
  • 351 Accesses

Abstract

Highly efficient numerical techniques are discussed for solving eigenvalue problems which arise in convection driven instability problems in porous media. The differential equations are written as a system of second order or first order equations and boundary conditions are incorporated naturally into the generalised matrix eigenvalue problem which arises in order that the problem of suppression of spurious eigenvalues is addressed. The methods easily give high resolution in boundary layers, yield all the eigenvalues and eigenfunctions, deal with complex coefficients, and can handle spatially dependent coefficients in a very efficient manner. The numerical techniques are illustrated by application to two very practical instability problems, namely convective motion of brine in a layer of salty sediments off the coast of Alaska (Hutter and Straughan, 1997, 1999) and inclined temperature gradient convection (Nield, 1994, 1998a). The methods are applicable to many, many more practical porous convection problems and some are mentioned.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boffi, D., Brezzi, F. and Gastaldi, L. 1997. On the convergence of eigenvalues for mixed formulations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25, 131–154.

    MathSciNet  MATH  Google Scholar 

  2. Boffi, D., Brezzi, F. and Gastaldi, L. 1998. Mixed finite elements for Maxwell’s eigenproblem: the question of spurious modes. ENUMATH 97, 2nd European Conference on Numerical Mathematics and Advanced Applications, Heidelberg, 1997. (H. G. Bock, F. Brezzi, R. Glowinski, G. Kanschat, Y. A. Kuznetov, J. Periaux, R. Rannacher, Eds.), World Scientific, pp. 180–187.

    Google Scholar 

  3. Boffi, D., Brezzi, F. and Gastaldi, L. 2000. On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Computation 69, 121–140.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Dongarra, J. J., Straughan, B. and Walker, D.W. 1996. Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problems. Appl. Numer. Math. 22, 399–435.

    Article  MathSciNet  MATH  Google Scholar 

  5. Gardner, D. R., Trogdon, S. A. and Douglas, R. W. 1989. A modified tau spectral method that eliminates spurious eigenvalues. J. Comput. Phys. 80, 137–167.

    Article  ADS  MATH  Google Scholar 

  6. Guo, J. and Kaloni, P. N. 1995. Nonlinear stability of convection induced by inclined thermal and solutal gradients. ZAMP 46, 645–654.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Haidvogel, D. B. and Zang, T. 1979. The accurate solution of Poisson’s equation by expansion in Chebyshev polynomials. J. Comput. Phys. 30, 167–180.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Hutter, K. and Straughan, B. 1997. Penetrative convection in thawing subsea permafrost. Continuum Mech. Thermodyn. 9, 259–272.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Hutter, K. and Straughan, B. 1999. Models for convection in thawing porous media in support of the subsea permafrost equations. J. Geophys. Res. B 104, 29249–29260.

    Article  ADS  Google Scholar 

  10. Kaloni, P. N. and Qiao, Z. C. 1997. Nonlinear stability of convection in a porous medium with inclined temperature gradient. Int. J. Heat Mass Trans. 40, 1611–1615.

    Article  MATH  Google Scholar 

  11. Manole, D. M., Lage, J. L. and Nield, D. A. 1994. Convection induced by inclined thermal and solutal gradients, with horizontal mass flow, in a shallow horizontal layer of a porous medium. Int. J. Heat Mass Trans. 37, 2047–2057.

    Article  MATH  Google Scholar 

  12. McFadden, G. B., Murray, B. T. and Boisvert, R. F. 1990. Elimination of spurious eigenvalues in the Chebyshev tau spectral method. J. Comput. Phys. 91, 228–239.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Nield, D. A. 1991. Convection in a porous medium with inclined temperature gradient. Int. J. Heat Mass Trans. 34, 87–92.

    Article  MATH  Google Scholar 

  14. Nield, D. A. 1994. Convection in a porous medium with inclined temperature gradient: additional results. Int. J. Heat Mass Trans. 37, 3021–3025.

    Article  MATH  Google Scholar 

  15. Nield, D. A. 1998a. Convection in a porous medium with inclined temperature gradient and vertical throughflow. Int. J. Heat Mass Trans. 41, 241–243.

    Article  MATH  Google Scholar 

  16. Nield, D. A. 1998b. Instability and turbulence in convective flows in porous media. In Nonlinear Instability, Chaos and Turbulence, pp. 225–276. Eds. L. Debnath and D. N. Riahi, WIT Press, Boston, Southampton.

    Google Scholar 

  17. Nield, D. A. and Bejan, A. 1999. Convection in Porous Media. Springer, New York.

    MATH  Google Scholar 

  18. Nield, D. A., Manole, D. M. and Lage, J. L. 1993. Convection induced by inclined thermal and solutal gradients in a shallow horizontal layer of a porous medium. J. Fluid Mech. 257, 559–574.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Payne, L. E. and Straughan, B. 2000. A naturally efficient numerical technique for porous convection stability with non-trivial boundary conditions. Int. J. Num. Anal. Meth. Geomech., in press.

    Google Scholar 

  20. Qiao, Z. C. and Kaloni, P. N. 1998. Nonlinear convection in a porous medium with inclined temperature gradient and vertical throughflow. Int. J. Heat Mass Trans. 41, 2549–2552.

    Article  MATH  Google Scholar 

  21. Straughan, B. 1992. The Energy Method, Stability, and Nonlinear Convection. Springer, Berlin etc.

    MATH  Google Scholar 

  22. Straughan, B. and Hutter, K. 1999. A priori bounds and structural stability for double diffusive convection incorporating the Soret effect. Proc. Roy. Soc. London A, 455, 767–777.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Straughan, B. and Walker, D. W. 1996. Two very accurate and efficient methods for computing eigenvalues and eigenfunctions in porous convection problems. J. Comput. Phys. 127, 128–141.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Straughan, B. and Walker, D. W. 1997. Multi component diffusion and penetrative convection. Fluid Dyn. Res. 19, 77–89.

    Article  ADS  Google Scholar 

  25. Terrones, G. and Pearlstein, A. J. 1989. The onset of convection in a multicom-ponent fluid layer. Phys. Fluids A 1, 845–853.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Tracey, J. 1997. Stability analyses of multicomponent convection-diffusion problems. Ph.D. Thesis, University of Glasgow.

    Google Scholar 

  27. Zebib, A. 1987. Removal of spurious modes encountered in solving stability problems by spectral methods. J. Comput. Phys. 70, 521–525.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Straughan, B. (2001). Porous Convection, the Chebyshev Tau Method, and Spurious Eigenvalues. In: Straughan, B., Greve, R., Ehrentraut, H., Wang, Y. (eds) Continuum Mechanics and Applications in Geophysics and the Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04439-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04439-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07500-1

  • Online ISBN: 978-3-662-04439-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics