Skip to main content

Biological Control of Fungal Plant Pathogens

  • Chapter
Book cover Agricultural Applications

Part of the book series: The Mycota ((MYCOTA,volume 11))

Abstract

Vast experience has been gained in the biological control of soilborne and foliar diseases of fruits, grain, fiber and wood products at pre-planting, during cultivation or at post-harvest. Infection by pathogens can be reduced under controlled or field conditions by pre-inoculation of the plant surfaces with filamentous fungi, bacteria, yeasts or viruses (Blakeman and Fokkema 1982; Andrews 1992; Tronsmo 1992; Blakeman 1993; Brasier 1998; Funck Jensen and Lumsden 1999). Biocontrol offers attractive alternatives or supplements to the use of conventional methods for disease control. Microbial biocontral agents (BCAs) are perceived as being less demanding to the environment and thei generally complex mode of action makes it unlikely that resistance will develop. The interest in biocontrol is reflected in the number of scientific publications that relate to this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams PB (1990) The potential of mycoparasites for biological control of plant diseases. Annu Rev Plant Pathol 28:59–72

    CAS  Google Scholar 

  • Ahmad JS, Baker R (1987) Rhizosphere competence of Trichoderma harzianum. Phytopathology 77:182–189

    Article  Google Scholar 

  • Alghisi P, Favaron F (1995) Pectin-degrading enzymes and plant-parasitic interactions. Eur J Plant Pathol 101:365–375

    Article  CAS  Google Scholar 

  • Alabouvette C, Lemanceau P, Steinberg C (1996) Biological control of Fusarium wilts: opportunities for developing a commercial product. In: Hall R (ed) Principles and practice of managing soilborne plant pathogens. APS Press, St. Paul, MN, pp 192–212

    Google Scholar 

  • Andrews JH (1992) Biological control in the phyllosphere. Annu Rev Phytopathol 30:603–635

    Article  PubMed  CAS  Google Scholar 

  • Askary H, Benhamou N, Brodeur J (1997) Ultrastructural and phytochemical investigations of the antagonistic effect of Verticillium lecanii on cucumber powdery mildew. Phytopathology 87:359–368

    Article  PubMed  CAS  Google Scholar 

  • Bélanger RR, Labbè C, Jarvis WR (1994) Commercialscale control of rose powdery mildew with a fungal antagonist. Plant Dis 78:420–424

    Article  Google Scholar 

  • Bélanger RR, Dik AJ, Menzies JG (1997) Powdery mildews: recent advances toward integrated control. In: Boland J, Kuykendall LD (eds) Plant-microbe interactions and biological control. Marcel Dekker, New York, pp 89–109

    Google Scholar 

  • Benyagoub M, Bel Rhlid R, Bélanger RR (1996) Purification and characterization of new fatty acids with antibiotic activity produced by Sporothrix flocculosa. J Chem Ecol 22: 405–413

    Article  CAS  Google Scholar 

  • Bertagnolli BL, Dal Soglio FK, Sinclair JB (1996) Extracellular enzyme profiles of the fungal pathogen Rhizoctonia solani isolate 2B-12 and of two antagonists, Bacillus megaterium strain B153–2–2 and Trichoderma harzianum isolate Th008. I. Possible correlation with inhibition of growth and biocontrol. Physiol Mol Plant Pathol 48:145–160

    Article  CAS  Google Scholar 

  • Bhatt DD, Vaughan EK (1962) Preliminary investigations on biological control of grey mould (Botrytis cinerea) of strawberries. Plant Dis Rep 46:342–345

    Google Scholar 

  • Blakeman JP (1985) Ecological succession of leaf surface microorganisms in relation to biological control. In: Windels CE, Lindow SE (eds) Biological control on the phylloplane. APS Press, St Paul, MN, pp 6–7

    Google Scholar 

  • Blakeman JP (1993) Pathogens in the foliar environment. Plant Pathol 42:479–493

    Article  Google Scholar 

  • Blakeman JP, Fokkema NJ (1982) Potential for biological control of plant diseases on the phylloplane. Annu Rev Phytopathol 20:167–192

    Article  Google Scholar 

  • Boland GJ, Hunter JE (1988) Influence of Alternaria alternata and Cladosporium cladosporioides on white mold of bean caused by Sclerotinia sclerotiorum. Can J Plant Pathol 10:172–177

    Article  Google Scholar 

  • Bourbos VA, Skoudridakis MT (1994) Integrated control of Botrytis cinerea in non-heated greenhouse tomatoes. 9th Congr Medit Phytopathol Un, pp 327–328

    Google Scholar 

  • Brasier CM (1998) Virus mediated biological control of fungal plant pathogens. The 1998 Brighton Conference — Pests and Diseases, pp 425–432

    Google Scholar 

  • Bruce A (1999) Biological control of wood decay. In: Bruce A, Palfreyman JW (eds) Forest products biotechnology. Taylor and Francis, London, pp 251–266

    Google Scholar 

  • Burpee, LL (1989) The influence of abiotic factors on biological control of soilborne plant pathogenic fungi. Can J Plant Pathol 12:306–317

    Google Scholar 

  • Burrage SW (1971) The micro-climate at the leaf surface. In: Preece TE, Dickinson CH (eds) Ecology of leaf surface microorganisms. Academic Press, London, pp 91–101

    Google Scholar 

  • Cervone F, Hahn MG, de Lorenzo G, Darvill A, Albershiem P (1989) Host pathogen interactions. XXXIII. A plant protein converts a fungal pathogenesis factor into an elicitor of plant defense responses. Plant Physiol 90:542–548

    Article  PubMed  CAS  Google Scholar 

  • Chanway CP, Nelson LM, Holl FB (1988) Cultivar-specific growth promotion of spring wheat (Triticum aestivum L.) by coexistans Bacillus sp. Can J Microbiol 34: 925–929

    Article  Google Scholar 

  • Chen BS, Choi BH, Nuss DL (1994) Attenuation of fungal virulence by synthetic infectious hypoviral transcripts. Science 264:1762–1764

    Article  PubMed  CAS  Google Scholar 

  • Chernin L, Ismailov Z, Haran S, Chet I (1995) Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol 61:1720–1726

    PubMed  CAS  Google Scholar 

  • Chet I, Barak Z, Oppenheim H (1993) Genetic engineering of microorganisms for improved biocontrol acticity. In: Chet I (ed) Biotechnology in plant disease control. Wiley, New York, pp 211–235

    Google Scholar 

  • Cutter EG (1976) Aspects of the structure and development of the aerial surfaces of higher plants. In: Dickinson CH, Preece TF (eds) Microbiology of aerial plant surfaces. Academic Press, London, pp 1–40

    Google Scholar 

  • Dehne HW (1982) Interaction between vasculararbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72:1115–1119

    Google Scholar 

  • De Boer M, van der Sluis I, van Loon LC, Bakker PAHM (1999) Combining fluorescent Pseudomonas spp. strains to enhance suppression of fusarium wilt of radish. Eur J Plant Pathol 105:201–210

    Article  Google Scholar 

  • De Meyer G, Bigirimana J, Elad Y, Höfte M (1998) Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur J Plant Pathol 104:279–286

    Article  Google Scholar 

  • De Meyer G, Höfte M (1997) Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588–593

    Article  PubMed  Google Scholar 

  • Dik AJ, Verhaar MA, Bélanger RR (1998) Comparison of three biological control agents against cucumber powdery mildew (Sphaerotheca fuliginea) in semicommercial-scale glasshouse trials. Eur J Plant Pathol 104:413–423

    Article  Google Scholar 

  • Dik AJ, Elad Y (1999) Comparison of antagonists of Botrytis cinerea in greenhouse-grown cucumber and tomato under different climatic conditions. Eur J Plant Pathol 105:123–137

    Article  Google Scholar 

  • Doherty MA, Preece TF (1978) Bacillus cereus prevents germination of uredospores of Puccinia allii and the development of rust disease of leek, Allium porrum, in controlled environment. Physiol Plant Pathol 12: 123–132

    Article  Google Scholar 

  • Droby S, Chalutz E, Wilson L (1991) Antagonistic microorganisms as biological control agents of postharvest diseases of fruits and vegetables. Postharvest News Inf 2:169–173

    Google Scholar 

  • Dubos B (1992) Biological control of Botrytis, state-of-theart. In: Verhoeff K, Malathrakis NE, Williamson B (eds) Recent advances in Botrytis research. Pudoc Scientific Publishers, Wageningen, pp 169–178

    Google Scholar 

  • Duffy BK, Ownley BH, Weller DM (1997) Soil chemical and physical properties associated with suppression of take-all of wheat by Trichoderma konigii. Phytopathology 87:1118–1124

    Article  PubMed  CAS  Google Scholar 

  • Duffy BK, Weller DM (1996) Biological control of take-all of wheat in the Pacific northwest of the USA using hypovirulent Gaeumannomyces graminis var. tritici and fluorescent pseudomonads. J Phytopathol 144: 585–590

    Article  Google Scholar 

  • Edwards SG, Seddon B (1992) Bacillus brevis as biocontrol agent against Botrytis cinerea on protected Chinese cabbage. In: Verhoeff K, Malathrakis NE, Williamson B (eds) Recent advances in Botrytis research. Pudoc Scientific Publishers, Wageningen, pp 267–271

    Google Scholar 

  • Elad Y (1995) Mycoparasitism. In: Kohmoto K, Singh US, Singh RP (eds) Pathogenesis and host specificity in plant diseases: histopathological, biochemical, genetic and molecular basis, vol 2. Eukaryotes. Pergamon, Elsevier Science, Oxford, pp 289–307

    Google Scholar 

  • Elad Y (1996) Mechanisms involved in the biological control of Botrytis cinerea incited diseases. Eur J Plant Pathol 102:719–732

    Article  Google Scholar 

  • Elad Y (2000) Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Prot 19:709–714

    Article  Google Scholar 

  • Elad Y, Baker R (1985) The role of competition for iron and carbon in suppression of chlamydospore germination of Fusarium spp. by Pseudomonas spp. Phytopathology 75:1053–1059

    Article  CAS  Google Scholar 

  • Elad Y, Kapat A (1999) Role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. Eur J Plant Pathol 105:177–189

    Article  CAS  Google Scholar 

  • Elad Y, Kirshner B (1992) Establishment of an active Trichoderma population in the phylloplane and its effect on grey mould (Botrytis cinerea). Phytoparasitica 20(Suppl):137S-141S

    Article  Google Scholar 

  • Elad Y, Kirshner B (1993) Survival in the phylloplane of an introduced BCA (T.. harzianum T39) and populations of the plant pathogen Botrytis cinerea as modified by abiotic conditions. Phytoparasitica 21:303–313

    Article  Google Scholar 

  • Elad Y, Barbul O, Nitzani Y, Rav D, Zveibil A, Maimon M, Freeman S (2001) Inter- and intra-species variation in biocontrol activity. Proceedings of the 5th Congress of the European Foundation for Plant Pathology, pp. 474–478

    Google Scholar 

  • Elad Y, Bélanger RR, Köhl J (1999) Biological control of diseases in the phylloplane. In: Albajes R, Gullino ML, van Lenteren JC, Elad Y (eds) Integrated pest and disease management in greenhouse crops. Kluwer, Wageningen, pp 338–352

    Google Scholar 

  • Elad Y, Kirshner B, Nitzani Y, Sztejnberg A (1998) Management of powdery mildew and gray mold of cucumber by Trichoderma harzianum T39 and Ampelomyces quisqualis AQ10. Bio Control 43:241–251

    Google Scholar 

  • Elad Y, Köhl J, Fokkema NJ (1994a) Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic bacteria and fungi. Eur J Plant Pathol 100:315–336

    Article  Google Scholar 

  • Elad Y, Malathrakis NE, Dik AJ (1995) Biological control of Botrytis incited diseases and powdery mildews in greenhouse crops. Crop Prot 15:224–240

    Google Scholar 

  • Elad Y, Shtienberg D, Niv A (1994b) Trichoderma harzianum T39 integrated with fungicides, improved biocontrol of grey mould. Brighton Crop Prot Conf Pests Diseases, pp 1109–1113

    Google Scholar 

  • Elad Y, Zimand G, Zaqs Y, Zuriel S, Chet I (1993) Use of Trichoderma harzianum in combination or alternation with fungicides to control cucumber grey mould (Botrytis cinerea) under commercial greenhouse conditions. Plant Pathol 42:324–332

    Article  CAS  Google Scholar 

  • Falk SP, Gadoury DM, Cortesi P, Pearson RC, Seem RC (1995) Parasitism of Uncinula necator cleistothecia by the mycoparasite Ampelomyces quisqualis. Phytopathology 85:794–800

    Article  Google Scholar 

  • Flores A, Chet I, Herrera-Estrella A (1997) Improved biocontrol activity of Trichoderma harzianum by overexpression of the proteinase-encoding gene prb1. Curr Genet 31:30–37

    Article  PubMed  CAS  Google Scholar 

  • Fravel DR (1988) Role of antibiotics in the biocontrol of plant diseases. Annu Rev Plant Pathol 26:75–91

    CAS  Google Scholar 

  • Fravel DR, Rodes DJ, Larkin PR (1999) Production and commercialization of biocontrol products. In: Albajes R, Gullino ML, van Lenteren JC, Elad Y (eds) Integrated pest and disease management in greenhouse crops. Kluwer, Wageningen, pp 365–376

    Google Scholar 

  • Freeman S, and Rodriguez RJ (1993) Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. Science 260:75–78

    Article  PubMed  CAS  Google Scholar 

  • Funck Jensen D, Lumsden RD (1999) Biological control of soilborne pathogens. In: Albajes R, Gullino ML, van Lenteren JC, Elad Y (eds) Integrated pest and disease management in greenhouse crops. Kluwer, Wageningen, 319–337

    Google Scholar 

  • Geremia RA, Goldman GH, Jacobs D, Ardiles WB, Villa S, Montagu MV, Herrera-Estrella A (1993) Molecular characterization of the proteinase-encoding gene prb1, related to mycoparasitism by Trichoderma harzinum. Mol Microbiol 8:603–613

    Article  PubMed  CAS  Google Scholar 

  • Gerhardson B, Hökeberg M, Johnsson L (1998) Diseases control by a formulation of a living bacterium. The Brighton Conference — Pests and Diseases, pp 901–906

    Google Scholar 

  • Gilbert GS, Clayton MK, Handelsman J, Parke JL (1996) Use of cluster and discriminant analyses to compare rhizosphere bacterial communities biological perturbation. Microbiol Ecol 32:123–147

    Article  Google Scholar 

  • Guetsky R, Shtienberg D, Elad Y, Dinoor A (2001) Combination of biocontrol agents for reducing the variability of biological control. Phytopathology 91:621–627

    Article  PubMed  CAS  Google Scholar 

  • Haab D, Hagspiel K, Szakmary K, Kubicek CP (1990) Formation of the extracellular protease from Trichoderma reesei QM 9414 involved in cellulase degradation. J Biotechnol 16:187–198

    Article  CAS  Google Scholar 

  • Hajlaoui MR, Bélanger RR (1991) Comparative effects of temperature and humidity on the activity of three potential antagonists of rose powdery mildew. Neth J Plant Pathol 97:203–208

    Article  Google Scholar 

  • Hajlaoui MR, Traquair JA, Jarvis WR, Bélanger RR (1994) Antifungal activity of extracellular metabolites produced by Sporothrix flocculosa. Biocontrol Sci Tech 4:229–237

    Article  Google Scholar 

  • Hajlaoui MR, Benhamou N, Bélanger RR (1992) Cytochemical study of the antagonistic activity of Sporothrix flocculosa on rose powdery mildew, Sphaerotheca pannosa var rosae. Phytopathology 82:583–589

    Article  Google Scholar 

  • Hammerschmidt R, Kuæ J (1982) Lignification as a mechanism for induced systemic resistance in cucumber. Physiol Plant Pathol 20:73–82

    Article  CAS  Google Scholar 

  • Hammerschmidt R, Nuckles E, Kuæ J (1982) Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol Plant Pathol 20:73–82

    Article  CAS  Google Scholar 

  • Hannusch DJ, Boland GJ (1996) Interactions of air temperature, relative humidity and biological control agents on grey mould of bean. Eur J Plant Pathol 102:133–142

    Article  Google Scholar 

  • Hashioka Y, Nakai Y (1980) Ultrastructure of pycnidial development and mycoparasitism of Ampelomyces quisqualis parasitic on Erysiphales. Trans Mycol Soc Jpn 21:329–338

    Google Scholar 

  • Haran S, Schickler S, Pe’er S, Logemann S, Oppenheim A, Chet I (1993) Increased constitutive chitinase activity in transformed Trichoderma harzianum. Biol Control 3:101–108

    Article  Google Scholar 

  • Hijwegen T (1992) Biological control of cucumber powdery mildew with Tilletiopsis minor under greenhouse conditions. Neth J Plant Pathol 98:211–215

    Article  Google Scholar 

  • Hill DS, Stein JI, Torkewitz NR, Morse AM, Howell CR, Pachlatko JP, Becker JO, Ligon JM (1994) Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Appl Environ Microbiol 60:78–85

    PubMed  CAS  Google Scholar 

  • Hoch HC, Providenti R (1979) Mycoparasitic relationships, cytology of the Sphaerotheca fuliginea — Tilletiopsis sp. interaction. Phytopathology 69:359–362

    Article  Google Scholar 

  • Hofstein R (1994) Development of production, formulation and delivery systems. Brighton Crop Prot Conf Pests Diseases, pp 1273–1280

    Google Scholar 

  • Howell C, Stipanovic R, Lumsden R (1993) Antibiotic production by strains of Gliocladium virens and its relation to biocontrol of cotton seedling diseases. Biocontrol Sci Tech 3:435–441

    Article  Google Scholar 

  • Janisiewicz W (1996) Ecological diversity, niche overlap and coexistence of antagonists used for developing biocontrol of postharvest diseases of apples. Phytopathology 86:473–479

    Article  Google Scholar 

  • Janisiewicz WJ (1998) Biocontrol of postharvest diseases of temperate fruits — challenges and opportunities. In: Boland GJ, Kuykendall LD (eds) Plant-microbe interactions and biological control. Marcel Dekker, New York, pp 171–198

    Google Scholar 

  • Janisiewicz WJ, Peterson DL, Bors R (1994) Control of apple storage decay with Sporobolomyces roseus. Plant Dis 78:466–470

    Article  Google Scholar 

  • Janisiewicz WJ, Roitman J (1988) Biological control of blue mould and grey mould of apple and pear with Pseudomonas cepacia. Phytopathology 78:1697–1700

    Article  Google Scholar 

  • Jarvis WR (1992) Managing diseases in greenhouse crops. APS Press, Bethesda, 288 pp

    Google Scholar 

  • Jarvis WR, Slingsby K (1977) The control of powdery mildew of greenhouse cucumber by water sprays and Ampelomyces quisqualis. Plant Dis Reptr 61:728–730

    Google Scholar 

  • Jijakli MA, Lepoivre P, Grevesse C (1999) Yeast species for biocontrol of apple postharvest diseases: an encouraging case of study for practical use. In: Mukerji KG, Chamola BP, Upadhyay RK (eds) Biotechnological approaches in biocontrol of plant pathogens. Kluwer Academic/Plenum Publishers New York, pp 31–49

    Chapter  Google Scholar 

  • Kapat A, Zimand Y, Elad Y (1998a) Effect of two isolates of Trichoderma harzianum on the activity of hydrolytic enzymes produced by Botrytis cinerea. Physiol Mol Plant Pathol 52:127–137

    Article  CAS  Google Scholar 

  • Kapat A, Zimand G, Elad Y (1998b) Biosynthesis of pathogenicity hydrolytic enzymes by Botrytis cinerea during infection of bean leaves and in vitro. Mycol Res 102:1017–1024

    Article  CAS  Google Scholar 

  • Klecan AL, Hippe S, Somerville SC (1990) Reduced growth of Erysiphe graminis f. sp. hordei induced by Tilletiopsis pallescens. Phytopathology 80:325–331

    Article  Google Scholar 

  • Kloepper JW, Tuzun S, Kuæ J (1992) Proposed definitions related to induced resistance. Biocontrol Sci Tech. 2:349–351

    Article  Google Scholar 

  • Köhl J, Fokkema NJ (1993) Fungal interactions on living and necrotic leaves. In: Blakeman JP, Williamson B (eds) Ecology of plant pathogens, CABI, GB, pp 321–334

    Google Scholar 

  • Köhl J, Molhoek WML, van der Plas CH, Fokkema NJ (1995a) Effect of Ulocladium atrum and other antagonists on sporulation of Botrytis cinerea on dead lily leaves exposed to field conditions. Phytopathology 85:393–401

    Article  Google Scholar 

  • Köhl J, van der Plas CH, Molhoek WML, Fokkema NJ (1995b) Effect of interrupted leaf wetness periods on suppression of sporulation of Botrytis allii and Botrytis cinerea by antagonists on dead onion leaves. Eur J Plant Pathol 101:627–637

    Article  Google Scholar 

  • Kranz J (1981) Hyperparasitism of biotrophic fungi. In: Blakeman JP (ed) Microbiology of the phylloplane. Academic Press, London, pp 327–352

    Google Scholar 

  • Kuæ J (1987) Plant immunization and its applicability for disease control. In: Chet I (ed) Innovative approaches to plant disease control. Wiley, New York, pp 255–274

    Google Scholar 

  • Labudova I, Gogorova L (1988) Biological control of phytopathogenic fungi through lytic action of Trichoderma species. FEMS Microbiol Lett 52:193–198

    Article  Google Scholar 

  • Leibinger W, Breuker B, Hahn M, Mendgen K (1997) Control of postharvest pathogns and colonization of apple surface by antagonistic microorganisms in the field. Phytopathology 87:1103–1110

    Article  PubMed  CAS  Google Scholar 

  • Leifert C, Li H, Chidburee S, Hampson S, Workman S, Sigee D, Epton HAS, Harbour A (1995) Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J Appl Bacteriol 78:97–108

    Article  PubMed  CAS  Google Scholar 

  • Lemanceau P, Corebrand T, Gardan L, Latour X, Laguerre G, Boeufgras J-M, Allabouvette C (1995) Effect of two plant species, flax (Linum usitatissinum L) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations of fluorescent pseudomonads. Appl Environ Microbiol 61:1004–1012

    PubMed  CAS  Google Scholar 

  • Lifshitz R, Dupler M, Elad Y, Baker R (1984) Hyphal interactions between a mycoparasite, Pythium nunn, and several soil fungi. Can J Microbiol 30:1482–1487

    Article  Google Scholar 

  • Limón MC, Pintor-Toro JA, Benitez T (1999) Increased antifungal activity of Trichoderma harzianum transformants that overexpress a 33-kDa chitinase. Phytopathology 89:254–261

    Article  PubMed  Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant-Microbe Interact 4:5–13

    Article  CAS  Google Scholar 

  • Lorito M, Harman GE, Hayes CK, Broadway RM, Tronsmo A, Woo SL, Di Pietro A (1993) Chitinolytic enzymes produced by Trichoderma harzianum: antifungal activity of purified endochitinase and chitobiosidase. Phytopathology 83:302–307

    Article  CAS  Google Scholar 

  • Malathrakis NE, Klironomou EJ (1992) Effectiveness of Acremonium alternatum and glycerol against cucumber powdery mildew (Sphaerotheca fuliginea). In: Tjamos EC, Papavizas GC, Cook RJ (eds) Biological control of plant diseases, progress and challenges for the future. Plenum Press, New York, pp 443–446

    Google Scholar 

  • Maurhofer M, Keel C, Hass D, Defago G (1995) Influence of plant species on disease suppression by Pseudomonas fluorescens strain CHAO with enhanced antibiotic production. Plant Pathol 44:40–50

    Article  Google Scholar 

  • Maurhofer M, Keel C, Schnider U, Voisard C, Haas D, Défago G (1992) Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHAO on its disease suppressive capacity. Phytopathology 82:190–195

    Article  CAS  Google Scholar 

  • McLaughlin RJ, Wisniewski ME, Wilson CL, Chalutz E (1990) Effect of inoculum concentration and salt solutions on biological control of postharvest diseases of apple with Candida sp. Phytopathology 80:456–461

    Article  CAS  Google Scholar 

  • Mercier J, Wilson CL (1994) Colonization of apple wounds by naturally occurring microflora and introduced Candida oleophila and their effect on infection by Botrytis cinerea during storage. Biol Control 4: 138–144

    Article  Google Scholar 

  • Metraux JP, Boller T (1986) Local and systemic induction of chitinase in cucumber plants in response to viral, bacterial and fungal infection. Physiol Mol Plant Pathol 28:161–169

    Article  CAS  Google Scholar 

  • Migheli Q, González-Candelas L, Dealessi L, Camponogara A, Ramón-Vidal D (1998) Transformation of Trichoderma longibrachitum overexpressing the β-1,4-endoglucanase gene egl1 shows enhanced biocontrol of Pythium ultimum on cucumber. Phytopathology 88:673–677

    Article  PubMed  CAS  Google Scholar 

  • Nelson ME, Powelson ML (1988) Biological control of gray mold of snap beans by Trichoderma hamatum. Plant Dis 72:727–729

    Article  Google Scholar 

  • Newhook FJ (1951) Microbiological control of Botrytis cinerea Pers. II. Antagonism by fungi and actinomycetes. Ann Appl Biol 35:185–202

    Article  Google Scholar 

  • Nuss DL (1992) Biological control of chestnut blight: an example of virus-mediated attenuation of fungal pathogenesis. Microbial Rev 56:561–576

    CAS  Google Scholar 

  • Ogawa K, Komada H (1986) Induction of systemic resistance against Fusarium wilt of sweet potato. Ann Phytopathol Soc Jpn 52:15–21

    Article  Google Scholar 

  • O’Neill TM, Elad Y, Shtienberg D, Cohen A (1996) Control of grapevine grey mould with Trichoderma harzianum T39. Biocontrol Sci Technol 6:139–146

    Article  Google Scholar 

  • Pasini C, D’Aquilla F, Curir P, Gullino ML (1997) Effectiveness of antifungal compounds against rose powdery mildew (Sphaerotheca pannosa var rosae) in greenhouses. Crop Prot 16:251–256

    Article  CAS  Google Scholar 

  • Paulitz TC, Matta A (1999) The role of the host in biological control of diseases. In: Albajes R, Gullino ML, van Lenteren JC, Elad Y (eds) Integrated pest and disease management in greenhouse crops. Kluwer, Wageningen, pp 394–410

    Google Scholar 

  • Peng G, Sutton JC, Kevan PG (1992) Effectiveness of honey bees for applying the biocontrol agent Gliocladium roseum to strawberry flowers to suppress Botrytis cinerea. Can J Plant Pathol 14:117–129

    Article  Google Scholar 

  • Petrini O (1986) Taxonomy of endophytic fungi of aerial plant tissues. In: Fokkema NJ, van den Heuvel J (eds) Microbiology of the phyllosphere. Cambridge University Press, Cambridge, pp 175–187

    Google Scholar 

  • Philipp W D, Crüger G (1979) Parasitismus von Ampelomyces quisqualis auf echten Mehltaupilzen an Gurken und anderen Gemüsearten. Z Pflanzenkr Pflanzens 86:129–142

    Google Scholar 

  • Pietr SJ, Stankiewicz M, Borowicz JJ (1994) The possible role of proteolytic enzymes in biocontrol of soil borne pathogens In: Environmental and biotic factors for integrated plant disease control. 3rd Conf European Foundation for Plant Pathology, Poznan, Poland, p 60

    Google Scholar 

  • Press CM, Wilson M, Kloepper JW, Tuzun S (1995) Salicylate production by plant growth-promoting rhizobacteria which induce systemic disease resistance in cucumber. Phytopathology 85:1154 abstr

    Google Scholar 

  • Raupach GS, Kloepper JW (1998) Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158–1164

    Article  PubMed  CAS  Google Scholar 

  • Redman RS, Freeman S, Clifton DR, Morrel J, Brown GS, Rodriguez RJ (1999) Biochemical analysis of plant protection afforded by a non-pathogenic endophytic mutant of Colletotrichum magna (teleomorph: Glomerella magna; Jenkins and Winstead, 1964). Plant Physiol 119: 795–803

    Article  PubMed  CAS  Google Scholar 

  • Redmond JC, Marois JJ, MacDonald JD (1987) Biological control of Botrytis cinerea with epiphytic microorganisms. Plant Dis 71:799–802

    Article  Google Scholar 

  • Roberts RG (1990) Postharvest biological control of grey mould of apple by Cryptococcus laurentii. Phytopathology 80:526–530

    Article  Google Scholar 

  • Rodriguez-Kabana R, Kelley WD, Curl EA (1978) Proteolytic activity of Trichoderma viride in mixed culture with Sclerotium rolfsii in soil. Can J Microbiol 24:487–490

    Article  PubMed  CAS  Google Scholar 

  • Schneider RW (1984) Effects of nonpathogenic strains of Fusarium oxysporum on celery root infection by F. oxysporum f. sp. apii and a novel use of the Lineweaver Burke double reciprocal plot technique. Phytopathology 74:646–653

    Article  Google Scholar 

  • Schoernan MW, Webber JF, Dickinson DJ (1999) The development of ideas in biological control applied to forest products. Int Biodeterior Biodegrad 43:109–123

    Article  Google Scholar 

  • Sequeira L (1983) Mechanisms of induced resistance in plants. Annu Rev Microbiol 37:51–79

    Article  PubMed  CAS  Google Scholar 

  • Shaul O, Galili S, Volpin H, Ginzberg I, Elad Y, Chet I, Kapulnik Y (1999) Mycorrhiza-induced changes in disease severity and PR protein expression in tobacco leaves. Mol Plant-Microbe Interact 12:1000–1007

    Article  PubMed  CAS  Google Scholar 

  • Shtienberg D, Elad Y (1997) Incorporation of weather forecasting in integrated, biological-chemical management of Botrytis cinerea. Phytopathology 87:332–339

    Article  PubMed  CAS  Google Scholar 

  • Smith KP, Handelsom J, Goodman RM (1997) Modeling dose-response relationships in biological control: partitioning host responses to the pathogen and biocontrol agent. Phytopathology 87:720–729

    Article  PubMed  CAS  Google Scholar 

  • Spencer DM, Ebben MH (1983) Biological control of cucumber powdery mildew Ann Rep Glasshouse Crops Research Institute 1981, Littlehampton, pp 128–129

    Google Scholar 

  • St Arnaud M, Hamel C, Caron M, Fortin JA (1994) Inhibition of Pythium ultimum in roots and growth substances of mycorrhizal Tagetes patula colonized with Glomus intraradicices. Can J Plant Pathol 16:187–194

    Article  Google Scholar 

  • Sundheim L (1986) Use of hyperparasites in biological control of biotrophic plant pathogens. In: Fokkema NJ, van den Heuvel J (eds) Microbiology of the phylloplane. Cambridge University Press, London, pp 333–347

    Google Scholar 

  • Sundheim L, Amundsen T (1982) Fungicide tolerance in the hyperparasite Ampelomyces quisqualis and integrated control of cucumber powdery mildew. Acta Agric Scand 32:349–355

    Article  CAS  Google Scholar 

  • Sundheim L, Poplawsky A, Ellingboe H (1988) Molecular cloning of two chitinase genes from Serracia marcescens and their expression in Pseudomonas species. Physiol Mol Plant Pathol 33:483–491

    Article  CAS  Google Scholar 

  • Sztejnberg A, Galper S, Mazar S, Lisker N (1989) Ampelomyces quisqualis for biological and integrated control of powdery mildew in Israel. J Phytopathol 124:285–295

    CAS  Google Scholar 

  • Teixido N, Vinas I, Usall J, Magan N (1998) Control of blue mold of apples by preharvest application of Candida sake grown in media with different water activity. Phytopathology 88:960–964

    Article  PubMed  CAS  Google Scholar 

  • Tenning P, Rijsbergen R van, Zhao Y, Joos H (1993) Cloning and transfer of genes for antifungal compounds from Erwinia herbicola to Escherichia coli. Mol Plant-Microbe Interact 6:474–480

    Article  PubMed  CAS  Google Scholar 

  • Tronsmo A (1992) Leaf and blossom epiphytes and endophytes as biological control agents. In: Tjamos ES, Papavizas GC, Cook RJ (eds) Biological control of plant diseases, progress and challenges for the future. Plenum Press, New York, pp 43–54

    Google Scholar 

  • Tronsmo A, Dennis C (1977) The use of Trichoderma species to control strawberry fruit rots. Neth J Plant Path 83(Suppl 1):449–455

    Article  Google Scholar 

  • Tuzun S, Kuæ J (1985) A modified technique for inducing systemic resistance to blue mold and increasing growth of tobacco. Phytopathology 75:1127–1129

    Article  Google Scholar 

  • Verhaar MA, Hijwegen T, Zadoks JC (1996) Glasshouse experiments on biocontrol of cucumber powdery mildew (Sphaerotheca fuliginea) by the mycoparasites Verticillium lecanii and Sporothrix rugulosa. Biol Control 6:353–360

    Article  Google Scholar 

  • Weller DM (1986) Effects of wheat genotype on root colonization by a take-all suppressive strain of Pseudomonas fluorescence. Phytopathology 76:1059(abstr)

    Google Scholar 

  • Whipps JM (1997) Developments in the biological control of soil-borne plant pathogens. Adv Bot Res 26:1–134

    Article  Google Scholar 

  • Whipps JM, McQuilken MP, Budge SP (1993) Use of fungal antagonists for biocontrol of damping-off and Sclerotinia diseases. Pestic Sci 37:309–313

    Article  Google Scholar 

  • White JG, Linfield CA, Lahdenpera ML, Voti J (1990) Mycostop — a novel biofungicide based on Streptomyces griseoviridis. Brighton Crop Prot Conf Pests Dis, pp 221–226

    Google Scholar 

  • Wilson CL (1989) Managing the microflora of harvested fruits and vegetables to enhance resistance. Phytopathology 79:1387–1390

    Google Scholar 

  • Wilhite SE, Lumsden RD, Straney DC (1994) Mutational analysis of gliotoxin production by the biocontrol fungus Gliocladium virens in relation to suppression of Pythium damping-off. Phytopathology 84:816–821

    Article  CAS  Google Scholar 

  • Wisniewski M, Biles C, Droby S, MacLaughlin RJ, Wilson C, Chalutz E (1991) Mode of action of postharvest biocontrol yeast, Pichia guilliermondii. I. Characterization of attachment to Botrytis cinerea. Physiol Mol Plant Pathol 39:245–258

    Article  CAS  Google Scholar 

  • Wood RKS (1951) The control of diseases of lettuce by use of antagonistic microorganisms. I. The control of Botrytis cinerea Pers. Ann Appl Bio1 38:203–216

    Article  Google Scholar 

  • Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 65:1061–1070

    PubMed  CAS  Google Scholar 

  • Zhang Z, Yuen GY (1999) Biological control of Bipolaris sorokiniana on tall fescue by Strenotrophomonas maltophilia strain C3. Phytopathology 89:817–822

    Article  PubMed  CAS  Google Scholar 

  • Zhou T, Boland GJ (1998) Suppression of Dolar spot by hypovirulent isolates of Sclerotinia homeocarpa. Phytopathology 88:788–794

    Article  PubMed  CAS  Google Scholar 

  • Zimand G, Elad Y, Chet I (1991) Biological control of Botrytis cinerea by Trichoderma spp. Phytoparasitica 19:252–253

    Google Scholar 

  • Zimand G, Elad Y, Chet I (1996) Effect of Trichoderma harzianum on Botrytis cinerea pathogenicity. Phytopathology 86:1255–1260

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Elad, Y., Freeman, S. (2002). Biological Control of Fungal Plant Pathogens. In: Kempken, F. (eds) Agricultural Applications. The Mycota, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03059-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03059-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07650-3

  • Online ISBN: 978-3-662-03059-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics