Skip to main content

Freund und Feind: Hautbakterien als Erreger von Krankenhausinfektionen

  • Chapter
  • First Online:
Book cover Neue und alte Infektionskrankheiten
  • 4707 Accesses

Zusammenfassung

Der Einsatz implantierbarer Fremdmaterialien ist heute integraler Bestandteil der modernen Medizin. Diese Fremdmaterialien werden genutzt, um temporär oder längerfristig Organfunktionen zu unterstützen oder sogar, wie zum Beispiel beim Einsatz künstlicher Gelenke, vollständig zu ersetzen. Die Implantation von Fremdmaterialien stellt ein signifikantes Risiko für die Entwicklung einer Infektion dar: alleine in Deutschland werden jährlich bis zu 100.000 Fälle einer Infektion nach Fremdmaterialanwendung beobachtet. Bei diesen so genannten Fremdmaterial‐assoziierten Infektionen lässt sich in der überwiegenden Zahl von Fällen Staphylococcus epidermidis nachweisen. Dieser Erreger wird der Gruppe der Koagulase‐negativen Staphylokokken zugerechnet und kann regulär auf der Haut praktischer aller Menschen gefunden werden ohne hierbei eine pathogene Bedeutung zu haben. Demnach ist S. epidermidis im Kontext Implantatassoziierter Infektionen als ein klassischer opportunistischer Erreger zu bezeichnen. Sein selektives pathogenes Potential resultiert aus der Fähigkeit, die Oberfläche von künstlichen Materialien in Form fest haftender, mehrschichtiger Bakterienaggregate zu besiedeln. Diese Eigenschaft, die auch als Biofilmbildung bezeichnet wird, hat schwerwiegende Konsequenzen, denn sie schützt den Erreger vor dem Immunsystem des Menschen und macht ihn unempfindlich gegen Antibiotika. In der Folge imponieren S. epidermidis Infektionen als chronische, schwer behandelbare Erkrankungen, die in der Regel nur durch die Entfernung des Fremdmaterials geheilt werden können. Die Erforschung der genauen molekularen Zusammenhänge, die zur S. epidermidis Biofilmbildung führen, hat gezeigt, dass dieser Prozess von vielen unterschiedlichen Determinanten abhängt. Besonders bedeutsam sind bakterielle Oberflächenstrukturen wie Polysaccharide und Proteine, die die Wechselwirkung von S. epidermidis mit der Implantatoberfläche ermöglichen und durch die Ausbildung einer extrazellulären Matrix den Biofilm stabilisieren. Die differenzierten molekularen Erkenntnisse zur Entstehung von S. epidermidis Biofilmen haben bereits jetzt zur Formulierung und konkreten Untersuchung neuer Präventivmaßnahmen zur Vermeidung und therapeutischen Interventionen zur Behandlung implantatassoziierter Infektionen geführt. Die weitere Erforschung der molekularen Pathogenese von S. epidermidis Biofilminfektionen kann somit zukünftig zur Entwicklung neuartiger Behandlungsmethoden führen.

Abstract

Infections associated with indwelling medical devices are a major problem in modern medicine, affecting millions of patients worldwide each year. Coagulase‐negative Staphylococci, especially Staphylococcus epidermidis, are the most characteristic causative organisms isolated in the context of device‐related infections. The tight pathogenetic association between foreignbody implantation and staphylococcal infection is related to their capability to establish multilayered, highly structured biofilms on artificial surfaces. The ever‐increasing spread of highly resistant Staphylococci as well as the inherent resistance of biofilm‐organized bacteria against antibiotics and effector mechanisms of the host immune system regularly results in failure of conventional therapeutic protocols. In order to identify novel, innovative targets for improved diagnostic, therapeutic and prophylactic approaches the elucidation of the molecular pathogenesis of staphylococcal foreign‐body related infections has gained superior interest over the last two decades. This review summarizes the current knowledge of staphylococcal biofilm infections and emphasizes the implications of the progress made for clinical management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Rupp, M. E.;Archer, G. L. Coagulase‐negative staphylococci: pathogens associated with medical progress. Clin. Infect. Dis. 1994, 19 (2), 231‐243.

    Article  PubMed  CAS  Google Scholar 

  2. Mack, D.;Horstkotte, M. A.;Rohde, H.;Knobloch, J. K. M. Coagulase‐Negative Staphylococci. In Biofilms, Infection, and Antimicrobial Therapy, Pace, J. L., Rupp, M. E., Finch, R. G. Eds.; CRC Press: Boca Raton, 2006; pp 109‐153.

    Google Scholar 

  3. Baddour, L. M.;Wilson, W. R.;Bayer, A. S.;Fowler, V. G., Jr.;Bolger, A. F.;Levison, M. E.;Ferrieri, P.;Gerber, M. A.;Tani, L. Y.;Gewitz, M. H.;Tong, D. C.;Steckelberg, J. M.; Baltimore, R. S.; Shulman, S. T.; Burns, J. C.; Falace, D. A.; Newburger, J. W.; Pallasch, T. J.; Takahashi, M.; Taubert, K. A. Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications: a statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: endorsed by the Infectious Diseases Society of America. Circulation. 2005, 111 (23), e394‐e434.

    Article  PubMed  Google Scholar 

  4. Darouiche, R. O. Treatment of infections associated with surgical implants. N. Engl. J. Med. 2004, 350 (14), 1422‐1429.

    Article  PubMed  CAS  Google Scholar 

  5. Sampedro, M. F.;Patel, R. Infections associated with long‐term prosthetic devices. Infect. Dis. Clin. North Am. 2007, 21 (3), 785‐ 819, x.

    Article  PubMed  Google Scholar 

  6. Patel, R.;Osmon, D. R.;Hanssen, A. D. The diagnosis of prosthetic joint infection: current techniques and emerging technologies. Clin. Orthop. Relat Res. 2005, (437), 55‐58.

    Article  PubMed  Google Scholar 

  7. Warren, D. K.;Quadir, W. W.;Hollenbeak, C. S.;Elward, A. M.;Cox, M. J.;Fraser, V. J. Attributable cost of catheter‐associated bloodstream infections among intensive care patients in a nonteaching hospital. Crit Care Med. 2006, 34 (8), 2084‐2089.

    Article  PubMed  Google Scholar 

  8. Pittet, D.;Wenzel, R. P. Nosocomial bloodstream infections. Secular trends in rates, mortality, and contribution to total hospital deaths. Arch. Intern. Med. 1995, 155 (11), 1177‐1184.

    Article  PubMed  CAS  Google Scholar 

  9. Mack, D.;Rohde, H.;Harris, L. G.;Davies, A. P.;Horstkotte, M. A.;Knobloch, J. K. Biofilm formation in medical device‐related infection. Int. J. Artif. Organs 2006, 29 (4), 343‐359.

    PubMed  CAS  Google Scholar 

  10. Vincent, J. L.; Bihari, D. J.; Suter, P. M.; Bruining, H. A.; White, J.; Nicolas‐Chanoin, M. H.; Wolff, M.; Spencer, R. C.; Hemmer, M. The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee. JAMA 1995, 274 (8), 639‐644.

    CAS  Google Scholar 

  11. Wisplinghoff, H.;Seifert, H.;Tallent, S. M.;Bischoff, T.;Wenzel, R. P.;Edmond, M. B. Nosocomial bloodstream infections in pediatric patients in United States hospitals: epidemiology, clinical features and susceptibilities. Pediatr. Infect. Dis. J. 2003, 22 (8), 686‐691.

    Article  PubMed  Google Scholar 

  12. Rogers, K. L.;Fey, P. D.;Rupp, M. E. Coagulase‐negative staphylococcal infections. Infect. Dis. Clin. North Am. 2009, 23 (1), 73‐98.

    Article  PubMed  Google Scholar 

  13. Lewis, K. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 2001, 45 (4), 999‐1007.

    Article  PubMed  CAS  Google Scholar 

  14. Götz, F. Staphylococcus and biofilms. Mol. Microbiol. 2002, 43 (6), 1367‐1378.

    Google Scholar 

  15. Costerton, J. W.;Stewart, P. S.;Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 1999, 284 (5418), 1318‐1322.

    Article  PubMed  CAS  Google Scholar 

  16. Hall‐Stoodley, L.;Costerton, J. W.;Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004, 2 (2), 95‐108.

    Article  PubMed  Google Scholar 

  17. Rohde, H.;Frankenberger, S.;Zähringer, U.;Mack, D. Structure, function and contribution of polysaccharide intercellular adhesin (PIA) to Staphylococcus epidermidis biofilm formation and pathogenesis of biomaterial‐associated infections. Eur. J. Cell Biol. 2010, 89 (1), 103‐111.

    Article  Google Scholar 

  18. Mack, D.;Davies, A. P.;Harris, L. G.;Knobloch, J. K.;Rohde, H. Staphylococcus epidermidis Biofilms: Functional Molecules, Relation to Virulence, and Vaccine Potential. Top. Curr. Chem. 2009, 288, 157‐182.

    PubMed  CAS  Google Scholar 

  19. Vuong, C.;Gerke, C.;Somerville, G. A.;Fischer, E. R.;Otto, M. Quorum‐sensing control of biofilm factors in Staphylococcus epidermidis. J. Infect. Dis. 2003, 188 (5), 706‐718.

    Article  PubMed  CAS  Google Scholar 

  20. Vuong, C.;Kocianova, S.;Yao, Y.;Carmody, A. B.;Otto, M. Increased colonization of indwelling medical devices by quorumsensing mutants of Staphylococcus epidermidis in vivo. J. Infect. Dis. 2004, 190 (8), 1498‐1505.

    Google Scholar 

  21. Heilmann, C.;Hussain, M.;Peters, G.;Götz, F. Evidence for autolysin‐mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol. Microbiol. 1997, 24 (5), 1013‐1024.

    Article  PubMed  CAS  Google Scholar 

  22. Li, D. Q.;Lundberg, F.;Ljungh, A. Characterization of vitronectinbinding proteins of Staphylococcus epidermidis. Curr. Microbiol. 2001, 42 (5), 361‐367.

    Article  PubMed  CAS  Google Scholar 

  23. Mack, D.;Haeder, M.;Siemssen, N.;Laufs, R. Association of biofilm production of coagulase‐negative staphylococci with expression of a specific polysaccharide intercellular adhesin. J. Infect. Dis. 1996, 174 (4), 881‐884.

    Article  PubMed  CAS  Google Scholar 

  24. Mack, D.;Nedelmann, M.;Krokotsch, A.;Schwarzkopf, A.;Heesemann, J.;Laufs, R. Characterization of transposon mutants of biofilm‐producing Staphylococcus epidermidis impaired in the accumulative phase of biofilm production: genetic identification of a hexosamine‐containing polysaccharide intercellular adhesin. Infect. Immun. 1994, 62 (8), 3244‐3253.

    PubMed  CAS  Google Scholar 

  25. Heilmann, C.;Schweitzer, O.;Gerke, C.;Vanittanakom, N.;Mack, D.;Götz, F. Molecular basis of intercellular adhesion in the biofilm‐forming Staphylococcus epidermidis. Mol. Microbiol. 1996, 20 (5), 1083‐1091.

    Article  PubMed  CAS  Google Scholar 

  26. Knobloch, J. K.; Jager, S.; Horstkotte, M. A.; Rohde, H.; Mack, D. RsbU‐dependent regulation of Staphylococcus epidermidis biofilm formation is mediated via the alternative sigma factor sigmaB by repression of the negative regulator gene icaR. Infect. Immun. 2004, 72 (7), 3838‐3848.

    Article  PubMed  Google Scholar 

  27. Tormo, M. A.;Marti, M.;Valle, J.;Manna, A. C.;Cheung, A. L.;Lasa, I.;Penades, J. R. SarA is an essential positive regulator of Staphylococcus epidermidis biofilm development. J. Bacteriol. 2005, 187 (7), 2348‐2356.

    Article  PubMed  CAS  Google Scholar 

  28. Ziebuhr, W.; Krimmer, V.; Rachid, S.; Lossner, I.; Götz, F.; Hacker, J. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol. Microbiol. 1999, 32 (2), 345‐356.

    Article  PubMed  CAS  Google Scholar 

  29. Vuong, C.;Kidder, J. B.;Jacobson, E. R.;Otto, M.;Proctor, R. A.;Somerville, G. A. Staphylococcus epidermidis polysaccharide intercellular adhesin production significantly increases during tricarboxylic acid cycle stress. J. Bacteriol. 2005, 187 (9), 2967‐ 2973.

    Article  PubMed  CAS  Google Scholar 

  30. Rupp, M. E.;Fey, P. D.;Heilmann, C.;Götz, F. Characterization of the Importance of Staphylococcus epidermidis Autolysin and Polysaccharide Intercellular Adhesin in the Pathogenesis of Intravascular Catheter‐Associated Infection in a Rat Model. J. Infect. Dis. 2001, 183 (7), 1038‐1042.

    Article  PubMed  CAS  Google Scholar 

  31. Begun, J.;Gaiani, J. M.;Rohde, H.;Mack, D.;Calderwood, S. B.;Ausubel, F. M.;Sifri, C. D. Staphylococcal biofilm exopolysaccharide protects against Caenorhabditis elegans immune defenses. PLoS. Pathog. 2007, 3 (4), e57.

    Google Scholar 

  32. Vuong, C.;Voyich, J. M.;Fischer, E. R.;Braughton, K. R.;Whitney, A. R.;DeLeo, F. R.;Otto, M. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol. 2004, 6 (3), 269‐275.

    Article  PubMed  CAS  Google Scholar 

  33. Kaplan, J. B.;Velliyagounder, K.;Ragunath, C.;Rohde, H.;Mack, D.;Knobloch, J. K.;Ramasubbu, N. Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. J. Bacteriol. 2004, 186 (24), 8213‐8220.

    Article  PubMed  CAS  Google Scholar 

  34. Rohde, H.;Knobloch, J. K.;Horstkotte, M. A.;Mack, D. Correlation of biofilm expression types of Staphylococcus epidermidis with polysaccharide intercellular adhesin synthesis: evidence for involvement of icaADBC genotype‐independent factors. Med. Microbiol. Immunol. (Berl) 2001, 190 (3), 105‐112.

    PubMed  CAS  Google Scholar 

  35. Klingenberg, C.;Ronnestad, A.;Anderson, A. S.;Abrahamsen, T. G.;Zorman, J.;Villaruz, A.;Flaegstad, T.;Otto, M.;Sollid, J. E. Persistent strains of coagulase‐negative staphylococci in a neonatal intensive care unit: virulence factors and invasiveness. Clin. Microbiol. Infect. 2007, 13 (11), 1100‐1111.

    Article  PubMed  CAS  Google Scholar 

  36. Rohde, H.;Kalitzky, M.;Kroger, N.;Scherpe, S.;Horstkotte, M. A.;Knobloch, J. K.;Zander, A. R.;Mack, D. Detection of virulenceassociated genes not useful for discriminating between invasive and commensal Staphylococcus epidermidis strains from a bone marrow transplant unit. J. Clin. Microbiol. 2004, 42 (12), 5614‐ 5619.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang, Y. Q.;Ren, S. X.;Li, H. L.;Wang, Y. X.;Fu, G.;Yang, J.;Qin, Z. Q.;Miao, Y. G.;Wang, W. Y.;Chen, R. S.;Shen, Y.;Chen, Z.;Yuan, Z. H.;Zhao, G. P.;Qu, D.;Danchin, A.;Wen, Y. M. Genome‐based analysis of virulence genes in a non‐biofilm‐forming Staphylococcus epidermidis strain (ATCC 12228). Mol. Microbiol. 2003, 49 (6), 1577‐1593.

    Article  PubMed  CAS  Google Scholar 

  38. Götz, F. Staphylococci in colonization and disease: prospective targets for drugs and vaccines. Curr. Opin. Microbiol. 2004, 7 (5), 477‐487.

    Article  PubMed  Google Scholar 

  39. Toledo‐Arana, A.;Merino, N.;Vergara‐Irigaray, M.;Debarbouille, M.;Penades, J. R.;Lasa, I. Staphylococcus aureus develops an alternative, ica‐independent biofilm in the absence of the arlRS two‐component system. J. Bacteriol. 2005, 187 (15), 5318-5329.

    Article  PubMed  Google Scholar 

  40. Latasa, C.;Solano, C.;Penades, J. R.;Lasa, I. Biofilm‐associated proteins. C. R. Biol. 2006, 329 (11), 849‐857.

    Article  PubMed  CAS  Google Scholar 

  41. Rohde, H.; Burdelski, C.; Bartscht, K.; Hussain, M.; Buck, F.; Horstkotte, M. A.; Knobloch, J. K.; Heilmann, C.; Herrmann, M.; Mack, D. Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulationassociated protein by staphylococcal and host proteases. Mol. Microbiol. 2005, 55 (6), 1883‐1895.

    Article  PubMed  CAS  Google Scholar 

  42. Banner, M. A.;Cunniffe, J. G.;Macintosh, R. L.;Foster, T. J.;Rohde, H.;Mack, D.;Hoyes, E.;Derrick, J.;Upton, M.;Handley, P. S. Localized tufts of fibrils on Staphylococcus epidermidis NCTC 11047 are comprised of the accumulation‐associated protein. J. Bacteriol. 2007, 189 (7), 2793‐2804.

    Article  PubMed  CAS  Google Scholar 

  43. Bateman, A.;Holden, M. T.;Yeats, C. The G5 domain: a potential N‐acetylglucosamine recognition domain involved in biofilm formation. Bioinformatics. 2005, 21 (8), 1301‐1303.

    Article  PubMed  CAS  Google Scholar 

  44. Conrady, D. G.; Brescia, C. C.; Horii, K.; Weiss, A. A.; Hassett, D. J.; Herr, A. B. A zinc‐dependent adhesion module is responsible for intercellular adhesion in staphylococcal biofilms. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (49), 19456‐19461.

    Article  PubMed  CAS  Google Scholar 

  45. Christner, M.;Franke, G. C.;Schommer, N. N.;Wendt, U.;Wegert, K.;Pehle, P.;Kroll, G.;Schulze, C.;Buck, F.;Mack, D.;Aepfelbacher, M.;Rohde, H. The giant extracellular matrix‐binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol. Microbiol. 2010, 75 (1), 187‐207.

    Article  PubMed  CAS  Google Scholar 

  46. Williams, R. J.;Henderson, B.;Sharp, L. J.;Nair, S. P. Identification of a Fibronectin‐Binding Protein from Staphylococcus epidermidis. Infect. Immun. 2002, 70 (12), 6805‐6810.

    Article  PubMed  CAS  Google Scholar 

  47. Otto, M. Staphylococcus epidermidis‐‐the ’accidental’ pathogen. Nat. Rev. Microbiol. 2009, 7 (8), 555‐567.

    Article  PubMed  CAS  Google Scholar 

  48. Rohde, H.;Mack, D.;Christner, M.;Burdelski, C.;Franke, G. C.;Knobloch, J. K. Pathogenesis of staphylococcal device‐related infections: from basic science to new diagnostic, therapeutic and prophylactic approaches. Rev. Med. Microbiol. 2006, 17 (17), 45‐ 54.

    Article  Google Scholar 

  49. Vuong, C.;Kocianova, S.;Voyich, J. M.;Yao, Y.;Fischer, E. R.;DeLeo, F. R.;Otto, M. A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J. Biol. Chem. 2004, 279 (52), 54881‐54886.

    Article  PubMed  CAS  Google Scholar 

  50. Kaplan, J. B.;Ragunath, C.;Velliyagounder, K.;Fine, D. H.;Ramasubbu, N. Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob. Agents Chemother. 2004, 48 (7), 2633‐2636.

    Article  CAS  Google Scholar 

  51. Kaplan, J. B. Therapeutic potential of biofilm‐dispersing enzymes. Int. J. Artif. Organs. 2009, 32 (9), 545‐554.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Rohde, H. (2014). Freund und Feind: Hautbakterien als Erreger von Krankenhausinfektionen. In: Fischer, M. (eds) Neue und alte Infektionskrankheiten. Springer Spektrum, Wiesbaden. https://doi.org/10.1007/978-3-658-04124-3_4

Download citation

Publish with us

Policies and ethics