Skip to main content

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 17))

Abstract

Lack of nutrient intake results in a loss of body fat and lean tissue [1] and hitherto the effects of nutritional depletion and repletion with refeeding have been judged by changes in body composition, especially of lean tissue. Lean tissue is composed of water, minerals, nitrogen and glycogen [2, 3], and feeding wasted individuals results in a gain of the multiple elements in lean tissue [4] as well as body fat. One of the elements responding to nutrient intake is body potassium, which has been used as an index of body cell mass [5], the metabolically active component of the lean tissue. We [6, 7] and others [8–10] have shown that in contrast to body nitrogen, body potassium responds rapidly to feeding by both oral [7] and intravenous routes [6, 8–10]. These changes have been interpreted as being due to changes in lean mass. However, the early restitution of body potassium without a rise in body nitrogen indicates that cell ion uptake occurs earlier than protein synthesis with nutritional support [9]. In support of this conclusion it has been shown, using ion selective electrodes, that hypocaloric feeding results in a fall in muscle membrane potential and in the concentration of intracellular ionic K+ [11, 12]. The changes were specifically related to nutrient deprivation as they could not be reversed by potassium supplementation per se [12].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Keys A, Brozek J, Henschel A, Mickelsen O, Taylor HL (1950) The Biology of Human Starvation. Vol I and II. Minneapolis, University of Minnesota Press

    Google Scholar 

  2. Heymsfeld SB, Lichtman S, Baumgartner RN, et al (1990) Body composition of humans: Comparison of two improved four-compartment models that differ in expense, technical complexity and radiation exposure. Am J Clin Nutr 52:52–58

    Google Scholar 

  3. Roubenoff R, Kehayias JJ (1991) The meaning and measurement of lean body mass. Nut Rev 49:165–175

    Google Scholar 

  4. Hill GL, King RFGJ, Smith RC (1979) Multi-element analysis of the living body by neutron activation analysis-application to critically ill patients receiving intravenous nutrition. Br J Surg 66:868–872

    Article  PubMed  CAS  Google Scholar 

  5. Moore FD, Olesen KH, McMurrey JD, Parker HV, Ball MR, Boyden CM (1963) The body cell mass and its supporting environment. WB Saunders, Philadelphia

    Google Scholar 

  6. Jeejeebhoy KN, Baker JP, Wolman SL, et al (1982) Critical evaluation of the role of clinical assessment and body composition studies in patients with malnutrition and after total parenteral nutrition. Am J Clin Nutr 35 (Suppl.): 1117–1127

    PubMed  CAS  Google Scholar 

  7. Russell DMcR, Prendergast PJ, Darby PL, Garfinkel PE, Whitwell J, Jeejeebhoy KN (1983) A comparison between muscle function and body composition in anorexia nervosa: The effect of refeeding. Am J Clin Nutr 38:229–237

    PubMed  CAS  Google Scholar 

  8. Collins JP, Oxby CB, Hill GL (1978) Intravenous amino acids and intravenous hyperalimentation as protein-sparing therapy after major surgery: A controlled trial. Lancet 1:788–791

    Article  PubMed  CAS  Google Scholar 

  9. Almond DJ, King RFGJ, Burkinshaw L (1987) Potasium depletion in surgical patients: Intracellular cation deficiency is independent of loss of body protein. Clin Nutr 6:45–50

    Article  Google Scholar 

  10. Almond DJ, King RFGJ, Burkinshaw L, Laughland A, McMahon MJ (1989) Influence of energy source upon body composition in patients receiving intravenous nutrition. JPEN 13:471–477

    Article  CAS  Google Scholar 

  11. Fong CN, Atwood HL, Jeejeebhoy KN, Charlton MP (1987) Nutrition and muscle potassium: Differential effect in rat slow and fast muscles. Can J Physiol Pharmacol 65:2188–2190

    Article  PubMed  CAS  Google Scholar 

  12. Pichard C, Hoshino E, Allard JP, Charlton MP, Atwood HL, Jeejeebhoy KN (1991) Intracellular potassium and membrane potential in rat muscles during malnutrition and subsequent refeeding. Am J Clin Nutr 54:489–498

    PubMed  CAS  Google Scholar 

  13. Newsholme E, Leech AR (1983) Biosynthesis of nucleic acids and proteins, Chap 18. In: Newsholme E, Leech AR (eds) Biochemistry for the medical sciences, 1st edn, J Wiley & Sons, Chichester, pp 651–680

    Google Scholar 

  14. Kammermeier H (1987) High energy phosphate of the myocardium: Concentration versus free energy. In: Jacob R, Just H, Holubarsch C (eds) Cardiac energetics. Basic research in cardiology. Springer-Verlag, New York, Vol 82 (suppl 2) pp 31–36

    Google Scholar 

  15. Munro HN (1964) Historical Introduction. In: Munro HN, Allison JB (eds) Mammalian protein metabolism. Academic Press, New York, Vol 1, pp 16–18

    Google Scholar 

  16. Russell DMcR, Walker PM, Leiter LA, et al (1984) Metabolic and structural changes in skeletal muscle during hypocaloric dieting. Am J Clin Nutr 39:503–513

    PubMed  CAS  Google Scholar 

  17. Lopes J, Russell DMcR, Whitwell J, Jeejeebhoy KN (1982) Skeletal muscle function in malnutrition. Am J Clin Nutr 36:602–610

    PubMed  CAS  Google Scholar 

  18. Russell DMcR, Leiter LA, Whitwell J, Marliss EB, Jeejeebhoy KN (1983) Skeletal muscle function during hypocaloric diets and fasting: A comparison with standard nutritional assessment parameters. Am J Clin Nutr 37: 133–138

    PubMed  CAS  Google Scholar 

  19. Berkelhammer CH, Leiter LA, Jeejeebhoy KN, et al (1985) Skeletal muscle function in chronic renal failure: An index of nutritional status. Am J Clin Nutr 42: 845–854

    PubMed  CAS  Google Scholar 

  20. Fraser IM, Russell DMcR, Whittaker S, et al (1984) Skeletal and diaphragmatic muscle function in malnourished chronic obstructive lung disease. Am Rev Respir Dis 129:A269

    Google Scholar 

  21. Brough W, Horne G, Blount A, Irving MH, Jeejeebhoy KN (1986) Effects of nutrient intake, surgery, sepsis, and long term administration of steroids on muscle function. Br Med J 293:983–988

    Article  CAS  Google Scholar 

  22. Russell DMcR, Atwood HL, Whittaker JS, et al (1984) The effect of fasting and hypocaloric diets on the functional and metabolic characteristics of rat gastrocnemius muscle. Clin Sci 67:185–194

    PubMed  CAS  Google Scholar 

  23. Dureuil B, Viires N, Veber B, Pavlovic D, et al (1989) Acute diaphragmatic changes induced by starvation in rats. Am J Clin Nutr 49:738–744

    PubMed  CAS  Google Scholar 

  24. Christie PM, Hill GL (1990) Effect of intravenous nutrition on nutrition and function in acute attacks of inflammatory bowel disease. Gastroenterology 99:730–736

    PubMed  CAS  Google Scholar 

  25. Windsor JA, Hill GL (1988) Weight loss with physiologic impairment: A basic indicator of surgical risk. Ann Surg 207:290–296

    Article  PubMed  CAS  Google Scholar 

  26. Sale DG, Martin JE, Moroz DE (1992) Hypertrophy without increased isometric strength after weight training. Eur J Appl Physiol 64:51–55

    Article  CAS  Google Scholar 

  27. Barnard RJ, Edgerton VR, Peter JB (1970) Effect of exercise on skeletal muscle. II. Contractile properties. J Appl Physiol 28:767–770

    PubMed  CAS  Google Scholar 

  28. Simard CP, Spector SA, Edgerton VR (1982) Contractile properties of rat hind limb muscles immobilized at different lengths. Exp Neurology 77: 467–482

    Article  CAS  Google Scholar 

  29. Sieck GC, Lewis MI, Blanco CE (1989) Effects of undernutrition on diaphragm fiber size,-SDH activity, and fatigue resistance. J Appl Physiol 66: 2196–2205

    PubMed  CAS  Google Scholar 

  30. Pichard C, Vaughan C, Struk R, Armstrong RL, Jeejeebhoy KN (1988) The effect of dietary manipulations (fasting, hypocaloric feeding and subsequent refeeding) on rat muscle energetics as assessed by nuclear magnetic resonance spectroscopy. J Clin Invest 82:895–901

    Article  PubMed  CAS  Google Scholar 

  31. Godt R, Nosek TM (1989) Changes of intracellular milieu with fatigue or hypoxia depress contraction of skinned rabbit skeletal and cardiac muscle. J Physiol 412:155–180

    PubMed  CAS  Google Scholar 

  32. Wilkie DR (1981) Shortage of chemical fuel as a cause of fatigue: Studies by nuclear magnetic resonance, bicycle ergometry. In: Porter R, Whelan J (eds) Human muscle fatigue: Physiological mechanisms. Pitman Medical, London pp 102–119

    Google Scholar 

  33. Bigland-Ritchie B (1981) EMG and fatigue of human voluntary and stimulated contractions. In: Porter R, Whelan J (eds) Human muscle fatigue: Physiological mechanisms. Pitman Medical, London, pp 130–156

    Google Scholar 

  34. Jones DA (1981) Muscle fatigue due to changes beyond the neuromuscular junction. In: Porter R, Whelan J (eds) Human muscle fatigue: Physiological mechanisms. Pitman Medical, London, pp 178–196

    Google Scholar 

  35. Rome LC, Kushmerick MJ (1983) Energetics of isometric contractions as a function of muscle temperature. Am J Physiol 244 (Cell Physiol 13) : C100–C109

    PubMed  CAS  Google Scholar 

  36. Homsher E, Kean CJ (1978) Skeletal muscle energetics and metabolism. Ann Rev Physiol 40:93–131

    Article  CAS  Google Scholar 

  37. Edwards RHT, Hill DK, Jones DA (1975) Metabolic changes associated with the slowing of relaxation in fatigued mouse muscle. J Physiol (London) 251:287–301

    CAS  Google Scholar 

  38. Wiles CM, Edwards RHT (1982) Metabolic heat production in isometric ischaemic contractions of human adductor pollicis. Clin Physiol 2:499–512

    Article  PubMed  CAS  Google Scholar 

  39. Nishio ML, Jeejeebhoy KN (1991) The effect of acute fasting versus hypocaloric feeding on skeletal muscle relaxation rate. J Appl Physiol 71:204–209

    PubMed  CAS  Google Scholar 

  40. Edwards RHT, Hill DK, Jones DA (1972) Effect of fatigue on the time course of relaxation from isometric contractions of skeletal muscle in man. J Physiol (London) 227:26P-27P

    CAS  Google Scholar 

  41. Wiles CM, Young A, Jones DA, Edwards RHT (1979) Relaxation rate of constituent muscle fibre types in human quadriceps. Clin Sci 56:47–52

    PubMed  CAS  Google Scholar 

  42. Viitasalo JT, Komi PV (1981) Effects of fatigue on isometric force and relaxation time characteristics in human muscle. Acta Physiol Scand 111:87–95

    Article  PubMed  CAS  Google Scholar 

  43. Esau SA, Bellamare F, Grassino A (1983) Changes in relaxation rate with diaphragmatic fatigue in humans. J Appl Physiol (Respirat Environ Exercise Physiol) 54:1353–1360

    CAS  Google Scholar 

  44. Esau SA, Bye PTP, Pardy RL (1983) Changes in rate of relaxation of sniffs with diaphragmatic fatigue. J Appl Physiol (Respirât Environ Exercise Physiol) 55:731–735

    CAS  Google Scholar 

  45. Lymn RW, Taylor EW (1971) Mechanism of adenosine triphosphate hydrolysis by ac- tomyosin. Biochemistry 10:4617–4624

    Article  PubMed  CAS  Google Scholar 

  46. Dawson MJ, Gadian DG, Wilkie DR (1980) Mechanical relaxation rate and metabolism studied in fatiguing muscle by phosphorus nuclear magnetic resonance. J Physiol (London) 299:465–484

    CAS  Google Scholar 

  47. Blinks JR, Rudel R, Taylor SR (1978) Calcium transients in isolated amphibian skeletal muscle fibres: Detection by aequorin. J Physiol (London) 277:291–323

    CAS  Google Scholar 

  48. Hultman E, Sjoholm H, Sahlin K, Edstrom L (1981) Energy metabolism in intact muscle. In: Porter R, Whelan J (eds) Human muscle fatigue: Physiological mechanisms. Pitman Medical, London, pp 19–40

    Google Scholar 

  49. Jewell BR, Wilkie DR (1960) Mechanical properties of relaxing muscle. J Physiol (London) 152:30–47

    CAS  Google Scholar 

  50. Chance B, Eleff S, Leigh JS (1981) Mitochondrial regulation of phosphocreatine, phosphate ratios in exercised human muscle: A gated 31P NMR study. Proc Natl Acad Sci USA 78:6714–6718

    Article  PubMed  CAS  Google Scholar 

  51. Gyulai L, Roth Z, Leigh JS, Chance B (1985) Bioenergetic studies of mitochondrial oxidative phosphorylation using 31Phosphorus NMR. J Biol Chem 260: 3947–3954

    PubMed  CAS  Google Scholar 

  52. Chance B, Leigh JS, Clark BJ (1985) Control of oxidative metabolism and oxygen delivery in human skeletal muscle: A steady-state analysis of the work/energy cost transfer function. Proc Natl Acad Sci USA 82:8384–8388

    Article  PubMed  CAS  Google Scholar 

  53. Chance B, Leigh JS, Kent J (1986) Multiple controls of oxidative metabolism in living tissues as studied by phosphorus magnetic resonance. Proc Natl Acad Sci USA 83:9458–9462

    Article  PubMed  CAS  Google Scholar 

  54. Meyer RA, Brown TR, Kushmerick MJ (1985) Phosphorus nuclear magnetic resonance of fast- and slow-twitch muscle. Am J Physiol 248 (Cell Physiol 17) : C279–C287

    PubMed  CAS  Google Scholar 

  55. Veech RL, Lawson JWR, Cornell NW, et al (1979) Cytosolic phosphorylation potential. J Biol Chem 254: 6538–6547

    PubMed  CAS  Google Scholar 

  56. Kodama T (1985) Thermodynamic analysis of muscle ATPase mechanisms. Physiol Rev 65:468–551

    Google Scholar 

  57. Chan STF, McLaughlin SJ, Ponting G A, et al (1986) Muscle power after glucose-potassium loading in undernourished patients. Br Med J 293:1055–1056

    Article  CAS  Google Scholar 

  58. Maughan D (1983) Diffusable magnesium in frog skeletal muscle cells. Biophys J 43:75–80.

    Article  PubMed  CAS  Google Scholar 

  59. Gupta RK, Gupta P, Yoshok WD, et al (1983) Measurement of the dissociation constant of MgATP at physiological nucleotide levels by a combination of 31P NMR and optical absorbance spectroscopy. Biochem Biophys Res Commun 117:210–216

    Article  PubMed  CAS  Google Scholar 

  60. Liaw KY, Askanazi J, Michelson CB, et al (1980) Effect of injury and sepsis on high- energy phosphate in muscle and red cells. J Trauma 20:755–759

    Article  PubMed  CAS  Google Scholar 

  61. Sahlin K, Palmskog G, Hultman E (1978) Adenine nucleotide and IMP contents of the quadriceps muscle in man after exercise. Pflugers Arch 374:193–198

    Article  PubMed  CAS  Google Scholar 

  62. Church JM, Choong BY, Hill GL (1986) Abnormal muscle fructose bisphosphatase activity in malnourished cancer patients. Cancer 58:2448–2452

    Article  PubMed  CAS  Google Scholar 

  63. Lunt JA, Brauer M, Swinamer D, et al (1986) An evaluation of fasting on exercise- induced changes in pH, Pi/PCr from skeletal muscle. Mag Res Med 3:946–952

    Article  CAS  Google Scholar 

  64. Argov Z, Maris J, Damico L, et al (1987) Bioenergetic heterogeneity of human mitochondrial myopathies as demonstrated by in vivo phosphorus magnetic resonance spectroscopy. Neurology 37:257–262

    PubMed  CAS  Google Scholar 

  65. Giger U, Argov Z, Schnall M, et al (1986) Myopathy in phosphofructokinase deficient dogs studied by in vivo 31-P NMR. Muscle & Nerve 19 (Suppl 5s): 187

    Google Scholar 

  66. Vagenakis AG (1977) Thyroid hormone in prolonged experimental starvation in man. In: Vigersky R (ed) Anorexia nervosa. Alan R Liss, New York, pp 243–252

    Google Scholar 

  67. Argov Z, Renshaw PF, Boden B, et al (1988) Effects of thyroid hormones on skeletal muscle bioenergetics: In vivo phosphorus-31 magnetic resonance spectroscopy study of humans and rats. J Clin Invest 81:1695–1701

    Article  PubMed  CAS  Google Scholar 

  68. Li CL, Shy GM, Wells J (1957) Some properties of mammalian skeletal muscle fibres with particular reference to fibrillation potentials. J Physiol 135:522–535

    PubMed  CAS  Google Scholar 

  69. Sulakhe PV, Drummond GI, Ng DC (1973) Calcium binding by skeletal muscle sarco- lemma. J Biol Chem 248:4150–4157

    PubMed  CAS  Google Scholar 

  70. Caputo C, Balanos P (1978) Effect of external sodium and calcium on calcium efflux in frog striated muscle. J Membr Biol 41:1–14

    Article  PubMed  CAS  Google Scholar 

  71. Jones DA, Jackson MJ, Edwards RHT (1983) Release of intracellular enzymes from an isolated mammalian skeletal muscle preparation. Clin Sci 65:193–201

    PubMed  CAS  Google Scholar 

  72. Jones DA, Jackson MJ, McPhail G, Edwards RHT (1984) Experimental mouse muscle damage: Importance of external calcium. Clin Sci 66:317–322

    PubMed  CAS  Google Scholar 

  73. Jackson MJ, Jones DA, Edwards RHT (1984) Experimental skeletal muscle damage: Nature of calcium-activated degenerative process. Eur J Clin Invest 14:369–374

    Article  PubMed  CAS  Google Scholar 

  74. Nicholls D, Ackerman K (1982) Mitochondrial calcium transport. Biochem Biophys Acta 683:57–88

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jeejeebhoy, K.N. (1993). Muscle Function and Energetics. In: Wilmore, D.W., Carpentier, Y.A. (eds) Metabolic Support of the Critically Ill Patient. Update in Intensive Care and Emergency Medicine, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85011-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85011-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85013-4

  • Online ISBN: 978-3-642-85011-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics