Skip to main content

Laser Technology for Interstitial Hyperthermia

  • Chapter
Interstitial and Intracavitary Thermoradiotherapy

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Laser is an acronym for light amplification by the stimulated emission of radiation. The concept and the basic mathematics were derived by A. Einstein in 1917. Spontaneous emission of radiation occurs when an atom moves down from one energy level to another in the course of which a photon is released. The frequency of this photon depends on the energy gap between the two levels. For this change to happen the atom has to attain a higher than resting energy state and does so by the absorption of radiation of the appropriate amount. This higher energy level is also referred to as excited as the atom is both at a higher level and less stable than at its normal resting level. Einstein proposed that if an atom in its excited state were hit by a photon with the same energy as that emitted on the change from the excited to ground state, then two photons, the original and a second one at the same wavelength, would result. Hence the stimulated emission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baggish MS, Daniell JF (1989) Death caused by air embolus associated with Nd-YAG laser surgery and artificial sapphire tips. Am J Obstet Gynecol 161: 877–878

    PubMed  CAS  Google Scholar 

  • Bosman S, Phoa SSK Bosma A, van Gemert MJC (1991) Effects of percutaneous interstitial thermal laser on normal liver of pigs: sonographic and histopathological correlations. Br J Surg 78: 572–575

    Article  PubMed  CAS  Google Scholar 

  • Bown SG (1983) Phototherapy of tumours. World J Surg 7: 700–709

    Article  PubMed  CAS  Google Scholar 

  • Cummins L, Neuenberg M (1983) Thermal effects of laser radiation in biological tissue. Biophys J 42: 99–102

    Article  PubMed  CAS  Google Scholar 

  • Dachman AH, McGee JA, Beam TE, Burris JA, Powell DA (1990) US guided percutaneous laser ablation of liver tissue in a chronic pig model. Radiology 25: 627–630

    Google Scholar 

  • Davis M, Dowden J, Steger AC, Kapadia P, Whiting P (1989) A mathematical model for interstitial laser treatment of tumours using four fibres. Lasers Med Sci 4: 41–53

    Article  Google Scholar 

  • Dickinson MR, Charlton A, King TA, Freemont AJ, Bramley R (1991) Studies of er-YAG interactions with soft tissue. Lasers Med Sci 6: 125–132

    Article  Google Scholar 

  • Dowden JM, Davis M, Kapadia P, Matthewson K (1987) Heat flow in laser treatment by local hyperthermia. Lasers Med Sci 2: 211–221

    Article  Google Scholar 

  • Einstein A (1917) Zur Quantem Theorie der Strahlung. Physikalische Zeitschrift 18: 121–30. In: Elmsford A (ed) (1967) Old quantum theory. Pergamon, New York, pp 167–183

    CAS  Google Scholar 

  • Godlewski G, Sambuc P, Eledjam JJ, Pignodel C, Ould-Said A, Bourgeois JM (1988a) A new device for inducing deep localised vapourisation in liver with the Nd-YAG laser. Lasers Med Sci 3: 111–117

    Article  Google Scholar 

  • Godlewski G, Rouy S, Pignodel C, Ould-Said A, Eledjam JJ, Bourgeois JM, Sambuc P (1988b) Deep localised Nd-YAG laser photocoagulation in liver using a new water cooled and echoguided handpiece. Lasers Surg Med 8: 501–509

    Article  PubMed  CAS  Google Scholar 

  • Halldorsson T, Langerholc J (1978) Thermodynamic analysis of laser irradiation of biological tissue. Appl Optics 17: 3948–3958

    Article  CAS  Google Scholar 

  • Hashimoto D, Takami M, Idezuki Y (1985) In depth radiation therapy by YAG laser for malignant tumours in the liver under ultrasonic imaging (abstract). Gastroenterology 88: 1663

    Google Scholar 

  • Hashimoto D, Yabe K, Uedera Y (1988) Ultrasonic guided laser therapy for liver cancers -experimental temperature measurements and clinical application. In: Waidelich W, Waidelich R (eds) Laser, optoelectronics in medicine. Proceedings of the 7th Congress International Society for Laser Surgery and Medicine 1987. Springer, Berlin Heidelberg New York, pp 168–171

    Google Scholar 

  • Hashimoto D, Yabe K, Uedera Y (1989) Ultrasonographi-cally guided lasers and spheric lasers. In: Riemann JF, Ell C (eds) Lasers in gastroenterology. International experiences and trends. Thieme, Stuttgart, pp 134–138

    Google Scholar 

  • Hoye RC, Thomas LB, Riggle GC, Ketcham A (1968) Effects of Nd laser on normal liver and Vx2 carcinoma transplanted into the liver of experimental animals. J Natl Cancer Inst 41: 1071–1082

    PubMed  CAS  Google Scholar 

  • Kanemaki N, Tsunekawa H, Brunger C et al. (1988) Endoscopic Nd-YAG laserthermia: experimental study on carcinoma bearing BDF1 mice. In: Waidelich W, Waidelich R (eds) Laser, optoelectronics in medicine. Proceedings of the 7th Congress International Society for Laser Surgery and Medicine 1987. Springer, Berlin Heidelberg New York, pp 200–203

    Google Scholar 

  • Kubelka P (1948) New contributions to the optics of intensely light scattering materials J Opt Soc Am [A] 38: 448–457

    Article  CAS  Google Scholar 

  • Langerholc J (1979) Moving phase transitions in laser-irradiated biological tissue. Appl Optics 18: 2286–2293

    Article  Google Scholar 

  • Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187: 4493–4494

    Article  Google Scholar 

  • Masters A, Steger AC, Bown SG (1991) Role of interstitial therapy in the treatment of liver cancer. Br J Surg 78: 518–523.

    Article  PubMed  CAS  Google Scholar 

  • Masters A, Steger AC, Lees WR, Walmsley KM, Bown SG (1992) Interstitial laser hyperthermia: a new approach for treating liver metastases. Br J Cancer 66: 518–522

    Article  PubMed  CAS  Google Scholar 

  • Matthewson K, Coleridge-Smith P, Northfield TC, Bown SG (1986) Comparison of continuous wave and pulsed excitation for interstitial Nd-YAG induced hyperthermia. Lasers Med Sci 1: 197–201

    Article  Google Scholar 

  • Matthewson K, Coleridge-Smith P, O’Sullivan JP, Northfield TC, Bown SG (1987) Biological effects of intrahepatic Nd-YAG laser photocoagulation in rats. Gastroenterology 93: 550–557

    PubMed  CAS  Google Scholar 

  • Matthewson K, Barr H, Tralau C, Bown SG (1989) Low power interstitial Nd-YAG laser photocoagulation, studies in a transplantable fibrosarcoma. Br J Surg 76: 378–381

    Article  PubMed  CAS  Google Scholar 

  • Matthewson K, Barton T, Lewin MR, O’Sullivan JP, Northfield TC, Bown SG (1988) Low power interstitial Nd-YAG laser photocoagulation in normal and neoplastic rat colon. Gut 29: 27–34

    Article  PubMed  CAS  Google Scholar 

  • McKenzie AL (1990) Physics of thermal processes in laser-tissue interaction. Phys Med Biol 35: 1175–1209

    Article  PubMed  CAS  Google Scholar 

  • Mordon SR, Brunetaud JM, Mosqet L, Charlier JR, Carpentier F, Bourez J, Migne J (1983) Pulsed Nd-YAG laser: study with an infrared camera, In: Joffe SN, Muck-erheide MC, Goldman L (eds) ND-YAG laser in medicine and surgery. Elsevier Science, New York, pp 271–276

    Google Scholar 

  • Mordon SR, Cornil AH, Brunetaud JM, Gosselin B, Moscetto Y (1987) Nd-YAG laser thermal effect: comparative study of coagulation in rat liver in vivo by continuous wave and high power pulsed lasers. Lasers Med Sci 2: 285–294

    Article  Google Scholar 

  • Mullins F, Hoye R, Ketcham AS, Kelly MG, O’Gara RW, McKnight WB, Jennings B (1967) Studies in laser destruction of chemically induced primate hepatomas. Am Surg 33: 298–303

    PubMed  CAS  Google Scholar 

  • Nakamura S, Nishiwaki Y, Suzuki S, Sakaguchi S, Yama-shita Y, Ohta K (1990) Light attenuation of human liver and hepatic tumours after surgical resection. Lasers Surg Med 10: 12–15

    Article  PubMed  CAS  Google Scholar 

  • Nishisaka T, Ozawa Y, Yonekawa M (1983) Analytical calculation of temperature distribution in biological tissue under laser irradiation In: Atsumi K (eds) New frontiers in laser medicine and surgery. Excerpta Medica, Amsterdam, pp 83–90

    Google Scholar 

  • Nolsoe C, Torp-Pederson S, Olldag E, Holm HH (1992) Bare fibre low power Nd-YAG laser interstitial hyperthermia. Comparison between diffuser tip and nonmodified tip. An in vitro study. Lasers Med Sci 7: 1–8

    Article  Google Scholar 

  • Panjehpour M, Overholt B, Milligan AJ, Swaggerty MW, Wilkinson JE, Klebanow ER (1990) ND-YAG laser induced interstitial hyperthermia using a long frosted contact probe. Lasers Surg Med 10: 16–24

    Article  PubMed  CAS  Google Scholar 

  • Parrish JA, Deutsch TF (1984) Laser photomedicine. IEEE Quantum Electronics QE-20: 1386–1396

    Article  Google Scholar 

  • Patterson MS, Wilson BS, Wyman DR (1991a) The propagation of optical radiation in tissue. 1: Models of radiation transport and their application Lasers Med Sci 6: 155–168

    Google Scholar 

  • Patterson MS, Wilson BS, Wyman DR (1991b) The propagation of optical radiation in tissue. II: Optical properties of tissues and resulting fluence distributions. Lasers Med Sci 6: 379–390

    Article  Google Scholar 

  • Schroder T, Puolakkainen PA, Hahl J, Ramo OJ (1989) Fatal air embolism as a complication of laser induced hyperthermia. Lasers Surg Med 9: 183–185

    Article  PubMed  CAS  Google Scholar 

  • Steger AC (1990) Low power applications of the Nd-YAG laser in general surgery. MS Thesis, University of London

    Google Scholar 

  • Steger AC, Bown SG (1989) Use of multiple fibre optic systems in the medical application of lasers. In: Katzir A (ed) The Proceedings of the SPIE-The International Society for Optical Engineering (SPIE Proceedings Series Volume 1067) Optical fibres in medicine IV, January 1989, pp 256–259

    Google Scholar 

  • Steger AC, McNicholas T (1990) Interstitial hyperthermia of the prostate. In: McNicholas TA (ed) Lasers in urology. Springer, London

    Google Scholar 

  • Steger AC, Barr H, Hawes R, Bown SG, Clark CG (1987) Experimental studies on low power laser interstitial hyperthermia for pancreatic cancer. Gut 28: A1382

    Google Scholar 

  • Steger AC, Lees WR, Walmsley K, Bown SG (1989) Interstitial laser hyperthermia: a new approach to local destruction of tumours. Br Med J 299: 362–365

    Article  CAS  Google Scholar 

  • Steger AC, Lees WR, Shorvon P, Walmsley K, Bown SG (1992a) Multiple-fibre low-power interstitial laser hyperthermia: studies in the normal liver. Br J Surg 79:139–145

    Article  PubMed  CAS  Google Scholar 

  • Steger AC, Shorvon P, Walmsley K, Chisholm R, Bown SG, Lees WR (1992b) Ultrasound features of low power interstitial laser hyperthermia Clin Radiol: 46: 88–93

    Article  PubMed  CAS  Google Scholar 

  • Svaasand L (1984) Thermal and optical dosimetry and photoradiation therapy of malignant tumours In: Cubeddu R, Andreoni A (eds) Porphorins in tumour phototherapy. Plenum, New York, pp 261–279

    Google Scholar 

  • Svaasand LO, Boerslid T, Oeveraasen M (1985) Thermal and optical properties of living tissue: application to laser induced hyperthermia. Lasers Surg Med 5: 589–602

    Article  PubMed  CAS  Google Scholar 

  • Townes CH, Schawlow A (1958) Infrared and optical lasers. Phys Rev, 2nd series, 112: 1940–1949

    Article  Google Scholar 

  • van Eyken P, Hiele M, Fevery J et al. (1991) Comparative study of low power Nd-YAG laser interstitial laser hyperthermia versus ethanol injection for controlled hepatic tissue destruction. Lasers Med Sci 6: 35–42

    Article  Google Scholar 

  • van Gemert MC, Henning JPH (1981) Model approach to laser coagulation of dermal vascular lesions. Arch Dermatol Res 270: 429–439

    Article  PubMed  Google Scholar 

  • Waldow SM, Morrison PR, Grossweiner LI (1988) Nd-YAG laser-induced hyperthermia in a mouse tumour model. Lasers Surg Med 8: 510–514

    Article  PubMed  CAS  Google Scholar 

  • Welch AJ (1984) The thermal response of laser irradiated tissue. IEEE J Quantum Electronics QE-20: 1471–1481

    Article  Google Scholar 

  • Wilson BC, Patterson MS (1986) The physics of photodynamic therapy. Phys Med Biol 31: 327–360

    Article  PubMed  CAS  Google Scholar 

  • Yoon G, Welch AJ, Motammedi M, van Gemert CJ (1987) Development and application of three dimensional light distribution model for laser irradiated tissue. IEEE J Quantum Electronics QE-23: 1721–1732

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steger, A.C. (1993). Laser Technology for Interstitial Hyperthermia. In: Seegenschmiedt, M.H., Sauer, R. (eds) Interstitial and Intracavitary Thermoradiotherapy. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84801-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84801-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84803-2

  • Online ISBN: 978-3-642-84801-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics