Skip to main content

Computational Significance of Lamination of the Telencephalon

  • Chapter
Visual Structures and Integrated Functions

Part of the book series: Research Notes in Neural Computing ((NEURALCOMPUTING,volume 3))

Abstract

How is sensory information processed in nonmammalian vertebrates? Is the mechanism of information processing similar to that in mammalian brains? In the nonmammalian telencephalon (birds and reptiles in particular), there are neuronal populations corresponding to cell groups in the neocortex of mammals in terms of connections, single unit-responses, and functions. Some areas of these populations in sauropsids (reptiles and birds), however, are arranged in a nonlaminar, rather than laminar fashion. The major nonlaminar multinucleate area, the dorsal ventricular ridge (DVR), is an intraventricular protrusion of cells within the core of the cerebral hemispheres. Comparative studies of visual representation with the DVR of birds and mammalian neocortex has emphasized the need for a reassessment of the functional roles of lamination of the mammalian neocortex. Thus, for example, complex visual and cognitive performance can be accomplished by neural circuits in the DVR of sauropsids equivalent to those of the neocortex but without laminar organization. If the same computational strategies in the DVR are employed in the mammalian forebrain, what is the functional significance of lamination in the neocortex? The role of neural circuits and laminar organization can be and should be differentiated in order to understand computational strategies in the neocortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Ariëns Kappers, C. U., Huber, G. C. and Crosby, E. C., 1936, The comparative Anatomy of the Nervous System of Vertebrates, Including Man. Republished in 1960, New York: Hafner.

    Google Scholar 

  • Bagnoli, P. and Burkhalter, A., 1983, Organization of the afferent projections to the Wulst in the pigeon. Journal of Comparative Neurology, 214:103–113.

    Article  Google Scholar 

  • Blough, D., 1982, Pigeon perception of letters of the alphabet. Science, 218:397–398.

    Article  Google Scholar 

  • Bonke, B. A., Bonke, D., and Scheich, H., 1979, Connectivity of the auditory forebrain nuclei in the guinea fowl (Numida meleagris). Cell Tissue Research, 200:101–121.

    Article  Google Scholar 

  • Brecha, N., Hunt, S. P. and Karten, H. J., 1976, Relations between the optic tectum and basal ganglia in the pigeon. Society for Neuroscience Abstract, 1, 95.

    Google Scholar 

  • Gray, C. M., König, P., Engel, A. K. and Singer, W., 1989, Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature. 338:334–337.

    Article  Google Scholar 

  • Hodos, W., 1976, Vision and the visual system: A bird’s eye-view. In J. M. Sprague & A. M. Epstein (Eds.), Progress in Psychobiology and Physiological Psychology (pp.29-62). New York: Academic Press.

    Google Scholar 

  • Karten, H. J., 1969, The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon. In C. Noback & J. Petras (Eds.), Comparative and evolutionary aspects of the vertebrate central nervous system. Annals New York Academy of Sciences, 167:146–179.

    Google Scholar 

  • Karten, H. J., 1967, Telencephalic projections of the nucleus ovoidalis in the pigeon (Columba livia). Anatomical Record, 157:268.

    Google Scholar 

  • Karten, H. J. and Shimizu, T., 1989, The origins of neocortex: Connections and lamination as distinct events in evolution. Journal of Cognitive Neuroscience, 1:291–301.

    Article  Google Scholar 

  • Karten, H. J., 1979, Visual lemniscal pathways in birds. In A. M. Granda & J. H. Maxwell (Eds.), Neural mechanisms of behavior in the pigeon (pp. 409-430). New York: Plenum Press.

    Google Scholar 

  • Karten, H. J., Hodos, W., Nauta, W. J. H., and Revzin, A. M. (1973). Neural connections of the “visual wulst” of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia). Journal of Comparative Neurology, 150:253–277.

    Article  Google Scholar 

  • Knudsen, E. I., du Lac, S., and Esterly, S. D., 1987, Computational maps in the brain. Annual Review of Neuroscience, 10:41–65.

    Article  Google Scholar 

  • Macphail, E. M., 1982, Brain and intelligence in vertebrates. New York: Oxford University Press.

    Google Scholar 

  • Macphail, E. M., 1987, The comparative psychology of intelligence. Behavioral and Brain Sciences, 10:645–695.

    Article  Google Scholar 

  • Miceli, D., Gioanni, H., Repérant, J. and Peyrichoux, J., 1979, The avian visual wulst: I. An anatomical study of afferent and efferent pathways. II An electrophysiological study of the functional properties of single neurons. In A. M. Granda & J. H. Maxwell (Eds.), Neural mechanisms of behavior in the pigeon (pp. 223-254). New York: Plenum press.

    Google Scholar 

  • Miceli, D., Repérant, J., Villalobos, J. and Dionne, L., 1987, Extratelencephalic projections of the avian Wulst. A quantitative autoradiographic study in the pigeon Columba livia. Journal für Hirnforschung, 28:45–57.

    Google Scholar 

  • Mountcastle, V. B., 1978, An organizing principle for cerebral function: The unit module and the distributed system. In G. M. Edelman & V. B. Mountcastle (Eds.), The mindful brain (pp. 7-50). Cambridge, MA: MIT press.

    Google Scholar 

  • Nauta, W. J. H. and Karten, H. J., 1970, A general profile of the vertebrate brain with sidelights on the ancestry of the cerebral cortex. In F. O. Schmitt (Ed.), The Neurosciences: Second Study Program. New York: Rockefeller Press.

    Google Scholar 

  • Northcutt, R. G., 1981, Evolution of the telencephalon in nonmammals. Annual Review of Neuroscience, 4:301–350.

    Article  Google Scholar 

  • Pepperberg, I, M., 1987, Interspecies communication: A tool for assessing conceptual abilities in the African Grey parrot (Psittacus erithacus). In G. Greenberg and E. Tobach (Eds.), Language, cognition and consciousness: Integrative levels (pp.31-56). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Pettigrew, J. D., 1979, Binocular visual processing in the owl’s telencephalon. Proceedings of the Royal Society (London), Series B, 204:435–454.

    Google Scholar 

  • Pritz, M. B., 1980, Parallels in the organization of auditory and visual systems in crocodiles. In S. O. E. Ebbesson (Ed.), Comparative neurology of the telencephalon (pp. 331-342). New York: Plenum Press.

    Google Scholar 

  • Reiner, A. and Karten, H. J., 1983, The laminar source of efferent projections from the avian Wulst. Brain Research, 275:349–354.

    Article  Google Scholar 

  • Ritchie, T. C. and Cohen, D. H., 1979, The avian tectofugal visual pathway: Projections of its telencephalon target ectostriatal complex. Society for Neuroscience Abstract, 2:119.

    Google Scholar 

  • Sherry, D. F., 1985, Food storage by birds and mammals. Advances in the Study of Behavior, 15:153–188.

    Article  Google Scholar 

  • Shimizu, T. and Hodos, W., 1989, Reversal learning in pigeons: effects of selective lesions of the wulst. Behavioral Neuroscience, 103:262–272.

    Article  Google Scholar 

  • Shimizu, T. and Karten, H. J., 1990, Immunohistochemical analysis of the visual wulst of the pigeon (Columba livia). Journal of Comparative Neurology, 300:2–25.

    Article  Google Scholar 

  • Shimizu, T., Woodson, W., Karten, H. J., and Schimke, J. B., 1989, Intratelencephalic connections of the visual areas in birds (Columba livia). Society for Neuroscience Abstract, 15:1398.

    Google Scholar 

  • Ulinski, P. S., 1983, Dorsal ventricular ridge, New York: John Wiley & Sons.

    Google Scholar 

  • Ulinski, P.S. and D. Margoliash, in press, Neurobiology of the reptile-bird transition In E. G. Jones and A. Peters (Eds.)., Cerebral Cortex, vol. 8., Evolution and Comparative Anatomy of Cerebral Cortex. New York: Plenum Press.

    Google Scholar 

  • Vaughan, W., Jr and Greene, S. L., 1984, Pigeon visual memory capacity. Journal of Experimental Psychology: Animal Behavior Processes, 10:256–271.

    Article  Google Scholar 

  • Wild, J. M., 1987, The avian somatosensory system: Connections of regions of body representation in the forebrain of the pigeon. Brain Research, 412:205–223.

    Article  Google Scholar 

  • Wild, J. M., Frost, B. J., and Karten, H. J., 1990, Some aspects of the organization of the auditory forebrain and midbrain in the pigeon. Society for Neuroscience Abstract. (In press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shimizu, T., Karten, H.J. (1991). Computational Significance of Lamination of the Telencephalon. In: Arbib, M.A., Ewert, JP. (eds) Visual Structures and Integrated Functions. Research Notes in Neural Computing, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84545-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84545-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54241-4

  • Online ISBN: 978-3-642-84545-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics