Skip to main content

Finite-Element-Simulation of Metal Forming Processes Using Two Different Material-Laws

  • Conference paper

Summary

Different kinds of finite-element approaches are available to simulate metal-forming processes. For bulk metal forming, the basic differences between these approaches arise from the constitutive equations modeling the material behaviour. The appropriate choice of the material law depends onto the aims of the analysis (such as the kind of results sought for) and the physical nature of the problem.

In this paper, firstly, the theoretical backgrounds for the implementation of two finite-elementmethods based on rigid- and elastic-plastic constitutive laws are described. Although both of the methods build up on the v. Mises yield criterion, the former is based on the Levy-Mises flow rule, whereas the latter one on a generalized Prandtl-Reuss flow rule. Furthermore, for the elastic-plastic material law, the non-linear kinematics are of prime importance. Secondly, the paper presents comparative numerical studies with the two approaches for selected metal-forming problems such as upsetting, rod-extrusion and cup-extrusion. Finally, some examples of industrial applications of finite-element simulations are given as the determination of residual stresses in workpieces formed through containerless extrusion, rod-extrusion, tube-extrusion. upsetting and drawing, and the analysis of combined forming processes. Special emphasis is given to to industrial utilization of the simulation methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Markov, A.A.: On Variational Principles in the Theory of Plasticity. Mehkanika, 11 (1947), pp. 339–350.

    MATH  Google Scholar 

  2. Lung, M.: Ein Verfahren zur Berechnung des Geschwindigkeits-und Spannungsfeldes bei stationären starr-plastischen Formänderungen mit finiten Elementen. Dr.-Ing. Dissertation, Technische Universität Hannover, 1971.

    Google Scholar 

  3. Roll, K.: Einsatz numerischer Näherungsverfahren bei der Berechnung von Verfahren der Kaltmassivumformung. Berichte aus dem Institut für Umformtechnik, Universität Stuttgart, Nr. 66, Berlin/Heidelberg/New York: Springer-Verlag, 1982.

    Google Scholar 

  4. Hill, R.: Some Basic Principles in the Mechanics of Solids without a Natural Time. J.Mech.Phys. Solids, 7 (1959), pp. 209–225.

    Article  MATH  Google Scholar 

  5. Ramm, E.: Geometrisch nichlineare Elastostatik und Finite-Elemente. Habilitationsschrift, Universität Stuttgart, 1976.

    Google Scholar 

  6. Bathe, K.-J.: Finite-Element Procedures in Engineering Analysis. New Jersey: Prentice-Hall, Inc., 1982.

    Google Scholar 

  7. Nagtegaal, J.C.; de Jong, J.E.: Some Aspects of Non-Isotropic Workhardening in Finite Plasticity. In: Plasticity of Metals at Finite Strain: Theory, Experiment and Computation. Proceedings of Research Workshop held at Stanford University, June 29, 30, July 1, 1981, pp. 65–106.

    Google Scholar 

  8. Wertheimer, T.B.: Problems in Large Deformation Elasto-Plastic Analysis Using the Finite-Element-Method. Ph.D.-Thesis, Stanford University, 1982.

    Google Scholar 

  9. McMeeking, R.M.; Rice, J.R.: Finite-Element Formulations for Problems of Large Elastic-Plastic Deformation. Int.J.Solids Structures, 11 (1975), pp. 601–616.

    Article  MATH  Google Scholar 

  10. Lee, E.H.; Mallett, R.L.; Yang, W.H.: Stress and Deformation Analysis of the Metal Extrusion Process. Comp.Meth.Appl.Mech.Engg. 10 (1977), pp. 339–353.

    Article  Google Scholar 

  11. Zienkiewicz, O.C.; Valliappan, S.; King, I.P.: Elasto-Plastic Solutions of Engineering Problems ‘Initial Stress’, Finite-Element Approach. Int.J.Num.Meth.Engg., 1 (1969), pp. 75–100.

    Article  MATH  Google Scholar 

  12. Lubarda, V.A.: Elastic-Plastic Deformation at Finite Strain. Ph.D.-Thesis, Stanford University, 1980.

    Google Scholar 

  13. Yamada, Y.; Yoshimura, N.; Sakurai, T.: Plastic Stress-Strain Matrix and its Application for the Solution of Elastic-Plastic Problems by the Finite-Element-Method. Int.J.Mech.Sci., 10 (1968), pp. 343–354.

    Article  MATH  Google Scholar 

  14. Eringen, A.C.: Mechanics of Continua. New York: John Wiley & Sons, Inc., 1967.

    MATH  Google Scholar 

  15. Yamada, Y.; Wifi, A.S.; Hirakawa, T.: Analysis of Large Deformation and Stress in Metal Forming Processes by the Finite-Element Method. In: Metal Forming Plasticity. Proceedings of Symposium held at Tutzing, August 28-September 3, 1978, pp. 158–176.

    Google Scholar 

  16. Mallett, R.L.: Personal Communication, 1982.

    Google Scholar 

  17. Dung, N.L.; Erlmann, K,: Die Berechnung der Metallumformung bei großen plastischen Formänderungen mit der Methode der Finiten Elemente. Final Report of Research Project I/34 210 sponsored by Stiftung Volkswagenwerk, December 1980.

    Google Scholar 

  18. Paukert, R.: Rechnerische Ermittlung von Zustandsgrößen beim Radialumformen. Berichte aus dem Institut für Umformtechnik, Universität Stuttgart, Nr. 78, Berlin/Heidelberg/New York/Tokyo: Springer-Verlag, 1983.

    Google Scholar 

  19. Lange, K.; Osen, W.: Cold Extrusion Processes Combined with Radial Extrusion. To be published in: Proceedings of the NAMRC XIII, 1985.

    Google Scholar 

  20. Tekkaya, A.E.; Gerhardt, J.: Residual Stresses in Cold-Formed Work-pieces. To be published in Annals of the CIRP, 1985.

    Google Scholar 

  21. Argyris, J.H. et al.: ASKA User’s Reference Manual, ISD-Report, Nr. 73, Stuttgart, 1971.

    Google Scholar 

  22. Drexler, W. et al.: EDV-Programmsystem BETSY, Final Report of the research project 209/245 sponsored by the Forschungsvereinigung Verbrennungskraftmaschinen e.V., Erlangen, 1982.

    Google Scholar 

  23. Bühler, H.; Schulz, E.H.: Die Verminderung der beim Kaltziehen in Stangen entstehenden Eigenspannungen. Stahl u. Eisen, 70 (1950) 25, pp. 1147–1152.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag, Berlin, Heidelberg

About this paper

Cite this paper

Tekkaya, A.E., Roll, K., Gerhardt, J., Herrmann, M., Du, G. (1986). Finite-Element-Simulation of Metal Forming Processes Using Two Different Material-Laws. In: Lange, K. (eds) Simulation of Metal Forming Processes by the Finite Element Method (SIMOP-I). Berichte aus dem Institut für Umformtechnik der Universität Stuttgart, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82810-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82810-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16592-7

  • Online ISBN: 978-3-642-82810-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics