Skip to main content

Regulation of Gut Oxygen Delivery, Cellular Oxygen Supply and Metabolic Activity

  • Chapter
Gut Dysfunction in Critical Illness

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 26))

Abstract

Over the past three decades, a large number of studies have examined the physiological regulation of blood flow, oxygen supply (DO2) and oxygen extraction (O2ER) in the gut using a wide variety of different models and experimental approaches. More recently, with a growing recognition of the potential significance of gut dysfunction in critical illness, investigators have explored the behavior of the gut under pathophysiological conditions, in terms of its regulation of cellular O2 supply and epithelial barrier function. In this review, we begin with a brief overview of the physiological regulation of intestinal blood flow and oxygen transport, and then proceed to examine the potential significance of these findings for the function of the gut during critical illness, and especially during sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lundgren O (1991) Microcirculation of the gastrointestinal tract and pancreas. In: Renkin EM, Michel CC (eds) Handbook of Physiology. The Microcirculation. Am Physiol Soc, pp 799–863

    Google Scholar 

  2. Gore RW, Bohlen HG (1977) Microvascular pressures in rat intestinal muscle and mucosal villi. Am J Physiol 233: H685–H693

    PubMed  CAS  Google Scholar 

  3. Folkow B (1967) Regional adjustments of intestinal blood flow. Gastroenterology 52: 423–432

    PubMed  CAS  Google Scholar 

  4. Barlow TE (1951) Arterio-venous anastomoses in the human stomach. J Anatomy 85: 1–4

    CAS  Google Scholar 

  5. Vajda J, Raposa T, Herpai Z (1968) Structural bases of blood flow regulation in the small intestine. Acta Morphologica Acad Sci Hung 16: 331–340

    CAS  Google Scholar 

  6. Schnitzlein HN (1957) Regulation of blood flow through the stomach of the rat. Anat Rec 127: 735–753

    Article  PubMed  CAS  Google Scholar 

  7. Shepherd AP, Riedel GL, Maxwell LC, Kiel JW (1984) Selective vasodilators redistribute intestinal blood flow and depress oxygen uptake. Am J Physiol 247: G377–G384

    PubMed  CAS  Google Scholar 

  8. Hultén L, Lindhagen J, Lundgren O (1977) Sympathetic nervous control of intramural blood flow in the feline and human intestines. Gastroenterology 72: 41–48

    PubMed  Google Scholar 

  9. Martin AW, Fuhrman FA (1955) The relationship between summated tissue respiration and metabolic rate in mouse and dog. Physiol Zool 28: 18–34

    Google Scholar 

  10. Shepherd AP, Riedel GL (1984) Differences in reactive hyperemia between the intestinal mucosa and muscularis. Am J Physiol 247: G617–G622

    PubMed  CAS  Google Scholar 

  11. Shepherd AP (1982) Metabolic control of intestinal oxygenation and blood flow. Fed Proc 41: 2084–2089

    PubMed  CAS  Google Scholar 

  12. Folkow B, Lewis DH, Lundgren O, Meilander S, Wallentin I (1964) The effect of graded vasoconstrictor fibre stimulation on the intestinal resistance and capacitance vessels. Acta Physiol Scand 61: 445–457

    Article  PubMed  CAS  Google Scholar 

  13. Shepherd AP, Riedel GL (1988) Intramural distribution of intestinal blood flow during sympathetic stimulation. Am J Physiol 255: H1091–H1095

    PubMed  CAS  Google Scholar 

  14. Nelson DP, King CE, Dodd SL, Schumacker PT, Cain SM (1987) Systemic and intestinal limits of O2 extraction in the dog. J Appl Physiol 63: 387–394

    PubMed  CAS  Google Scholar 

  15. Samsel RW, Schumacker PT (1994) Systemic hemorrhage augments local O2 extraction in canine intestine. J Appl Physiol 77: 2291–2298

    PubMed  CAS  Google Scholar 

  16. Granger DN, Kvietys PR, Perry MA (1982) Role of exchange vessels in the regulation of intestinal oxygenation. Am J Physiol 242: G570–G574

    PubMed  CAS  Google Scholar 

  17. Granger HJ, Goodman AH, Granger DN (1976) Role of resistance and exchange vessels in local microvascular control of skeletal muscle oxygenation in the dog. Circ Res 38: 379–385

    PubMed  CAS  Google Scholar 

  18. Holm-Rutili L, Perry MA, Granger DN (1981) Autoregulation of gastric blood flow and oxygen uptake. Am J Physiol 241: G143–G149

    PubMed  CAS  Google Scholar 

  19. Shepherd AP (1982) Local control of intestinal oxygenation and blood flow. Annu Rev Physiol 44:13–27

    Article  PubMed  CAS  Google Scholar 

  20. Shepherd AP, Riedel GL (1985) Laser-Doppler blood flowmetry of intestinal mucosal hyperemia induced by glucose and bile. Am J Physiol 248: G393–G397

    PubMed  CAS  Google Scholar 

  21. Connolly HV, Maginniss LA, Schumacker PT (1995) Effects of blood flow and sympathetic tone on intestinal microvascular transit time heterogeneity. Am J Resp Critical Care Med 151: A325(Abst)

    Google Scholar 

  22. Salzman AL, Wang H, Wollen PS, et al (1994) Endotoxin-induced ileal mucosal hyper-permeability in pigs: Role of tissue acidosis. Am J Physiol 266: G633–G646

    PubMed  CAS  Google Scholar 

  23. Fink MP, Antonsson JB, Wang HL, Rothschild HR (1991) Increased intestinal permeability in endotoxic pigs. Mesenteric hypoperfusion as an etiologic factor. Arch Surg 126: 211–218

    Article  PubMed  CAS  Google Scholar 

  24. Landow L, Andersen LW (1994) Splanchnic ischaemia and its role in multiple organ failure. Anaesth Scand 38: 626–639

    Article  CAS  Google Scholar 

  25. Clark CH, Gutierrez G (1992) Gastric intramucosal pH: A non-invasive method for the indirect measurement of tissue oxygenation. Am J Critical Care 1: 53–60

    CAS  Google Scholar 

  26. Gutierrez G, Palizas F, Doglio G, et al (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 339: 195–199

    Article  PubMed  CAS  Google Scholar 

  27. Gutierrez G, Clark C, Brown SD, Price K, Ortiz L, Nelson C (1994) Effect of dobutamine on oxygen consumption and gastric mucosal pH in septic patients. Am J Resp Crit Care Med 150: 324–329

    PubMed  CAS  Google Scholar 

  28. Friedman G, Berlot G, Kahn RJ, Vincent JL (1995) Combined measurements of blood lactate concentrations and gastric intramucosal pH in patients with severe sepsis. Crit Care Med 23: 1184–1193

    Article  PubMed  CAS  Google Scholar 

  29. Zhi-Yong S, Dong YL, Wang XH (1992) Bacterial translocation and multiple system organ failure in bowel ischemia and reperfusion. J Trauma 32: 148–153

    Article  PubMed  CAS  Google Scholar 

  30. Andersen LW, Landow L, Baek L, Jansen E, Baker S (1993) Association between gastric intramucosal pH and splanchnic endotoxin, antibody to endotoxin, and tumor necrosis factor-alpha concentrations in patients undergoing cardiopulmonary bypass. Crit Care Med 21: 210–217

    Article  PubMed  CAS  Google Scholar 

  31. Tokyay R, Zeigler ST, Traber DL, et al (1993) Postburn gastrointestinal vasoconstriction increases bacterial and endotoxin translocation. J Appl Physiol 74: 1521–1527

    Article  PubMed  CAS  Google Scholar 

  32. Baron P, Traber LD, Traber DL, et al (1994) Gut failure and translocation following burn and sepsis. J Surg Res 57: 197–204

    Article  PubMed  CAS  Google Scholar 

  33. Nelson DP, Samsel RW, Wood LDH, Schumacker PT (1988) Pathological supply dependence of systemic and intestinal O2 uptake during endotoxemia. J Appl Physiol 64: 2410–2419

    PubMed  CAS  Google Scholar 

  34. Schumacker PT, Kazaglis J, Connolly HV, Samsel RW, O’Connor MF, Umans JG (1995) Systemic and gut O2 extraction during endotoxemia: Role of nitric oxide synthesis. Am J Resp Critical Care Med 151: 107–115

    CAS  Google Scholar 

  35. Drazenovic R, Samsel RW, Wylam ME, Doerschuk CM, Schumacker PT (1992) Regulation of perfused capillary density in canine intestinal mucosa during endotoxemia. J Appl Physiol 72: 259–265

    Article  PubMed  CAS  Google Scholar 

  36. Vallet B, Lund N, Curtis SE, Kelly D, Cain SM (1994) Gut and muscle tissue PO2 in endotoxemic dogs during shock and resuscitation. J Appl Physiol 76: 793–800

    PubMed  CAS  Google Scholar 

  37. Beasley D (1990) Interleukin-1 and endotoxin activate soluble guanylate cyclase in vascular smooth muscle. Am J Physiol 259: R38–R44

    PubMed  CAS  Google Scholar 

  38. Beasley D, Cohen RA, Levinsky NG (1989) Interleukin-1 inhibits contraction of vascular smooth muscle. J Clin Invest 83: 331–335

    Article  PubMed  CAS  Google Scholar 

  39. Beasley D, Cohen RA, Levinsky NG (1990) Endotoxin inhibits contraction of vascular smooth muscle in vitro. Am J Physiol 258: H1187–H1192

    PubMed  CAS  Google Scholar 

  40. Fleming I, Julou-Schaeffer G, Gray GA, Parratt JR, Stoclet JC (1991) Evidence that an L-arginine/nitric oxide dependent elevation of tissue cyclic GMP content is involved in depression of vascular reactivity by endotoxin. Br J Pharm 103: 1047–1052

    CAS  Google Scholar 

  41. Bigaud M, Julou-Schaeffer G, Parratt JR, Stoclet JC (1990) Endotoxin-induced impairment of vascular smooth muscle contractions elicited by different mechanisms. Eur J Pharm 190: 185–192

    Article  CAS  Google Scholar 

  42. Nelson S, Steward RH, Traber LD, Traber DL (1991) Endotoxin-induced alterations in contractility of isolated blood vessels from sheep. Am J Physiol 260: H1790–H1794

    PubMed  CAS  Google Scholar 

  43. Umans JG, Wylam ME, Samsel RW, Edwards J, Schumacker PT (1993) Effects of endotoxin in vivo on endothelial and smooth muscle function in rabbit and rat aorta. Am Rev Respir Dis 148: 1638–1645

    Article  PubMed  CAS  Google Scholar 

  44. Wylam ME, Samsel RW, Umans JG, Mitchell RW, Leff AR, Schumacker PT (1990) Endotoxin impairs endothelium-dependent relaxation of canine arteries in vitro. Am Rev Respir Dis 142: 1263–1267

    PubMed  CAS  Google Scholar 

  45. Kilbourn RG, Gross SS, Jubran A, et al (1990) NG-methyl-L-arginine inhibits tumor necrosis factor-induced hypotension: Implications for the involvement of nitric oxide. Proc Natl Acad Sci USA 87: 3629–3632

    Article  PubMed  CAS  Google Scholar 

  46. Kilbourn RG, Jubran A, Gross SS, et al (1990) Reversal of endotoxin-mediated shock by NG-methyl-L-arginine, an inhibitor of nitric oxide synthesis. Biochem Biophy Res Comm 172: 1132–1138

    Article  CAS  Google Scholar 

  47. Cain SM (1992) Oxygen supply dependency in the critically ill — A continuing conundrum. Adv Exp Med Biol 317: 35–45

    PubMed  CAS  Google Scholar 

  48. Hotchkiss RS, Karl IE (1992) Reevaluation of the role of cellular hypoxia and bioenergetic failure in sepsis. JAMA 267: 1503–1510

    Article  PubMed  CAS  Google Scholar 

  49. Schaefer CF, Biber B (1993) Effects of endotoxemia on the redox level of brain cytochrome a,a3 in rats. Circ Shock 40: 1–8

    PubMed  CAS  Google Scholar 

  50. Schaefer CF, Lerner MR, Biber B (1991) Dose-related reduction of intestinal cytochrome a,a3 induced by endotoxin in rats. Circ Shock 33: 17–25

    PubMed  CAS  Google Scholar 

  51. Xu D, Qi L, Guillory D, Cruz N, Berg R, Deitch EA (1993) Mechanisms of endotoxin-induced intestinal injury in a hyperdynamic model of sepsis. J Trauma 34: 676–682

    Article  PubMed  CAS  Google Scholar 

  52. Vaughan WG, Horton JW, Walker PB (1992) Allopurinol prevents intestinal permeability changes after ischemia-reperfusion injury. J Pediatr Surg 27: 968–972

    Article  PubMed  CAS  Google Scholar 

  53. Granger DN, Korthuis RJ (1995) Physiologic mechanisms of posischemic tissue injury. Annu Rev Physiol 57: 311–332

    Article  PubMed  CAS  Google Scholar 

  54. Bakker J, Zhang H, Depierreux M, van Asbeck S, Vincent JL (1994) Effects of N-acetylcysteine in endotoxin shock. J Crit Care 9: 236–243

    Article  PubMed  CAS  Google Scholar 

  55. Spies CD, Reinhart K, Witt I, et al (1994) Influence of N-acetylcysteine on indirect indicators of tissue oxygenation in septic shock patients: Results from a prospective, randomized, double-blind study. Crit Care Med 22: 1738–1746

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schumacker, P.T. (1996). Regulation of Gut Oxygen Delivery, Cellular Oxygen Supply and Metabolic Activity. In: Rombeau, J.L., Takala, J. (eds) Gut Dysfunction in Critical Illness. Update in Intensive Care and Emergency Medicine, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80224-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80224-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80226-3

  • Online ISBN: 978-3-642-80224-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics