Skip to main content

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 23))

  • 41 Accesses

Abstract

The gut is comprised of a series of unique organs that absorb nutrients, electrolytes, and water and simultaneously secrete other electrolytes and water while it also retards the progress of ingested food down its length. The gut is continuously challenged with contents that vary both in their volume and composition. It limits the absorption of large, potentially harmful molecules such as antigens and toxins while absorbing smaller nontoxic substances with either a nutritional or caloric value [1]. The intestinal mucosa acts as a protective barrier between the external and internal milieu through which molecules of various size cross either by active or passive transport mechanisms which vary as a function of the anatomical region of the gut in question [2, 3]. This barrier is armored by intraluminal factors [4, 5], interepithelial factors [3], and extraintestinal factors [6]. The structure of the surface epithelium with its local mucosal immune system is the main pillar of the barrier [7]. Intraluminally, gastric acid, pancreatic and intestinal enzymes, intestinal motility, and the mucous coat covering the microvilli combined with secretory antibodies and colonization-resisting flora each strengthen the intestinal barrier and limit the proliferation and systemic dissemination of enteric pathogens. This system is supported by third-line defenses represented by the lymphoid system of the gut, liver, spleen, and systemic immunoglobulins which clear translocated pathogens and particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sellin JH (1993) Intestinal electrolyte absorption and secretion. In: Sleisenger MH, Fordtran JS (eds) Gastrointestinal disease. Saunders, Pennsylvania, pp 954–971

    Google Scholar 

  2. Van Leeuwen PAM, Boermeester MA, Houdijk APJ et al (1994) Clinical significance of translocation. Gut 1:S28-S34

    Article  Google Scholar 

  3. Dobbins WO (1982) Gut immunophysiology: a gastroenterologist view with emphasis on pathophysiology. Am J Physiol 242:91–98

    Google Scholar 

  4. Fink MP (1991) Gastrointestinal mucosal injury in experimental models of shock, trauma and sepsis. Crit Care Med 19:627–641

    Article  PubMed  CAS  Google Scholar 

  5. Hentges DJ (1983) Role of the intestinal microflora in the defense against infection. In: Hentges DJ (ed) Human intestinal microflora in health and disease. Academic, New York, pp 311–331

    Google Scholar 

  6. Gautreaux MD, Deitch EA, Berg RD (1990) Immunological mechanisms preventing bacterial translocation from the gastrointestinal tract. In: Heidt P (eds) Proceedings of the 10th international symposium on gnotobiology. Leiden, The Netherlands

    Google Scholar 

  7. Marin ML, Greenstein AJ, Geller SA, Gordon RE, Aufses AH (1983) A freeze fracture study of Crohn’s disease of the terminal ileum: changes in epithelial tight junction organization. Am J Gastroenterol 78:537–547

    PubMed  CAS  Google Scholar 

  8. Simons K, Fuller SD (1985) Cell surface polarity in epithelia. Ann Rev Cell Biol 1985;1:243–288

    Article  Google Scholar 

  9. Diamond JM (1977) The epithelial junction: bridge, gate and fence. Physiologist 20:10–18

    PubMed  CAS  Google Scholar 

  10. Madara JL, Barenberg D, Carlson S (1986) Effects of cytochalasin D on occluding junctions of intestinal absorptive cells: further evidence that the cytoskeleton may influence paracellular permeability and junctional charge selectivity. J Cell Biol 102:2125–2136

    Article  PubMed  CAS  Google Scholar 

  11. Claude P, Goodenough DA (1973) Fracture faces of zonulac occludentes from “tight” and “leaky” epithelia. J Cell Biol 58:390–400

    Article  PubMed  CAS  Google Scholar 

  12. Hollander D, Ricketts D, Boyd CAR (1988) The importance of “probe” molecular geometry in determining intestinal permeability. Can J Gastroenterol 2:35–38

    Google Scholar 

  13. Laker MF, Menzies IS (1977) Increase in human intestinal permeability following ingestion of hypertonic solutions. J Physiol (Lond) 273:881–894

    Google Scholar 

  14. Menzies IS (1984) Transmucosal passage of inert molecules in health and disease. In: Skadhange E, Heitze K (eds) Intestinal absorption and secretion. MTP, Lancaster, pp 527–543

    Google Scholar 

  15. Powell DW (1981) Barrier function of epithelia. Am J Physiol 241: G275-G288

    PubMed  CAS  Google Scholar 

  16. Maxton DG, Bjarnason I, Reynolds AP, Catt D, Peters TJ, Menzies IS (1986) 51Cr- labelled ethylenediaminetetra-acetate, l-rhamnose and polyethyleneglycol 500 as probe markers for assessment in vivo of human intestinal permeability. Clin Sci 71:71–80

    Google Scholar 

  17. Berg RD, Itoh K (1986) Bacterial translocation from the gastrointestinal tract-immuno- logic aspects. Microecol Ther 16:131–145

    Google Scholar 

  18. Walker WA (1985) Role of the mucosal barrier in toxin/microbial attachment to the gastrointestinal tract. Ciba Found Symp 112:34–47

    PubMed  CAS  Google Scholar 

  19. Mathison JC, Ulevitch RJ (1979) The clearance, tissue distribution and cellular localization of intravenously injected lipopolysaccharide in rabbits. J Immunol 123:2133–2143

    PubMed  CAS  Google Scholar 

  20. Maier RV, Hahnel GB (1984) Microthrombosis during endotoxemia: the role of hepatic versus alveolar macrophages. J Surg Res 36:362–370

    Article  PubMed  CAS  Google Scholar 

  21. Coalson JJ, Benjamin B, Archer LT et al (1978) Prolonged shock in the baboon subjected to infusion of E. coli endotoxin. Circ Shock 5:423–437

    PubMed  CAS  Google Scholar 

  22. Van Deventer SJH, Ten Cat JW, Tytgat GNJ (1988) Intestinal endotoxemia. Gastroenterology 94:825–831

    PubMed  Google Scholar 

  23. Schoffel U, Shiga J, Mittermayer CH (1982) The proliferation inhibiting effect of endotoxin on human endothelial cells in culture and its possible implication in states of shock. Circ Shock 9:499–508

    PubMed  CAS  Google Scholar 

  24. Greve JW, Gouma DJ, Soeters PB, Buurman WA (1990) Suppression of cellular immunity in obstructive jaundice is caused by endotoxins. Gastroenterology 98:478–485

    PubMed  CAS  Google Scholar 

  25. Van Leeuwen PAM, Hong RW, Rounds JD, Rodrick M, Wilmore DW (1991) Hepatic failure and coma after liver resection is reversed by manipulation of gut contents: the role of endotoxin. Surgery 110:169–175

    PubMed  Google Scholar 

  26. Baker JW, Deitch EA, Berg R, Ma L (1987) Hemorrhagic shock impairs the mucosal barrier resulting in bacterial translocation from the gut and sepsis. Surg Forum 37:73–74

    Google Scholar 

  27. Deitch EA, Winterton J, Berg RD (1986) Thermal injury promotes bacterial translocation from the gastrointestinal tract in mice with impaired T cell-mediated immunity. Arch Surg 121:97–101

    PubMed  CAS  Google Scholar 

  28. Deitch EA, Winterton J, Berg R (1987) Effect of starvation, malnutrition and trauma on the GI tract flora and bacterial translocation. Arch Surg 122:1019–1025

    PubMed  CAS  Google Scholar 

  29. Kosiol JM, Rush BF, Smith SM et al (1988) Occurrence of bacteremia during and after hemorrhagic shock. J Trauma 28:10

    Google Scholar 

  30. Deitch EA, Morrison J, Berg R et al (1990) Effect of hemorrhagic shock on bacterial translocation, intestinal morphology and intestinal permeability in conventional and antibiotic decontaminated rats. Crit Care Med 18:52931.

    Article  Google Scholar 

  31. Bailey RW, Bulkley GB, Levy KI et al (1982) Pathogenesis of nonocclusive mesenteric ischemia: studies in a porcine model induced by pericardial tamponade. Surg Forum 33:194

    Google Scholar 

  32. Porter JM, Sussman MS, Bulkley GB (1989) In: Marston A, Bulkley GB, Fiddian-Green BG et al (eds) Splanchnic vasospasm in circulatory shock in splanchnic ischemia and multiple organ failure. Arnold, London, pp 73–88

    Google Scholar 

  33. Berg RD (1992) Bacterial translocation from the gastrointestinal tract. J Med 23:217–244

    PubMed  CAS  Google Scholar 

  34. Nolan JP (1981) Endotoxin, reticuloendothelial function and liver injury. Hepatology 1:458–465

    Article  PubMed  CAS  Google Scholar 

  35. Palmer HR, Duerden BI, Holdsworth CD (1980) Bacteriological and endotoxin studies in cases of ulcerative colitis submitted to surgery. Gut 21:851–854

    Article  PubMed  CAS  Google Scholar 

  36. Wells CL, Maddaus MA, Reynolds CM, Jechorck RP, Simmons RL (1987) Role of anaerobic flora in the translocation of aerobic and facultatively anaerobic intestinal flora. Infect Immun 55:268–269

    Google Scholar 

  37. Berg RD, Garlington AW (1979) Translocation of certain indigenous bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other organs in a gnotobiotic mouse model. Infect Immun 23:403–411

    PubMed  CAS  Google Scholar 

  38. Hollander D, Koyama S, Dadufalza V et al (1989) Polyethylene glycol 900 permeability of rat intestinal and colonic segments in vivo and brush border membrane vesicles in vitro. J Lab Clin Med 113:505–515

    PubMed  CAS  Google Scholar 

  39. Menzies LS (1984) Transmucosal passage of inert molecules in health and disease. In: Skadhange E, Heintz K (eds) Intestinal absorption and secretion. MTP Press, Lancaster, pp 527–543 (Falk symposium 36)

    Google Scholar 

  40. Chadwick VS, Phillips SF, Hofmann AF (1977) Measurements of intestinal permeability using low molecular weight polyethylene glycols (PEG 400). Gastroenterology 73:241–246

    PubMed  CAS  Google Scholar 

  41. Ohri SK, Bjarnason I, Pathi V et al (1993) Cardiopulmonary bypass impairs small intestinal transport and increases gut permeability. Ann Thorac Surg 55:1080–1086

    Article  PubMed  CAS  Google Scholar 

  42. Kamage JK, Stanisz A, Scicchitano R, Hunt RH, Perdue MH (1988) Effect of immunologic reactions on rat intestinal epithelium. Correlation of increased intestinal permeability to chromium 51-labeled ethylenediaminetetraacetic acid and ovalbumin during acute inflammation and anaphylaxis. Gastroenterology 94:1368–1375

    Google Scholar 

  43. Ferry DM, Butt TJ, Broom MF et al (1989) Bacterial chemotactic oligopeptides and intestinal mucosal barrier. Gastroenterology 97:61–67

    PubMed  CAS  Google Scholar 

  44. Menzies IS (1974) Absorption of intact oligosaccharide in health and disease. Biochem Soc Trans 2:1042–1047

    CAS  Google Scholar 

  45. Chadwick VS, Philips SF, Hoffman AF (1977) Measurements of intestinal permeability using low molecular weight polyethylene glycols (PEG 400). II. Application to normal and abnormal permeability states in man and animals. Gastroenterology 73:247–251

    PubMed  CAS  Google Scholar 

  46. Bjarnason I, Peters TJ, Veall N (1983) A persistent defect of intestinal permeability in coeliac disease as demonstrated by a 51Cr-labelled EDTA absorption test. Lancet i:323–325

    Article  PubMed  CAS  Google Scholar 

  47. Ford RPK, Menzies IS, Phillips AD, Walker-Smith JA, Turner MW (1985) Intestinal sugar permeability: relationship to diarrhoeal disease and small bowel morphology. J Pediatr Gastroenterol Nutr 4:568–574

    Article  PubMed  CAS  Google Scholar 

  48. Philipsen EK, Batsberg W, Christensen AB (1988) Gastrointestinal permeability to polyethylene glycol: an evaluation of urinary recovery of an oral load of polyethylene glycol as a parameter of intestinal permeability in man. Eur J Clin Invest 18:139–145

    PubMed  CAS  Google Scholar 

  49. Jenkins AP, Nukajam WS, Menzies IS, Creamer B (1992) Simultaneous administration of lactulose and 51Cr-ethylenediaminetetraaeetic acid: a test to distinguish colonic from small-intestinal permeability change. Scand J Gastroenterol 27:769–773

    Article  PubMed  CAS  Google Scholar 

  50. Katz KD, Hollander D, Vadheim CM et al (1989) Intestinal permeability in patients with Crohn’s disease and their healthy relatives. Gastroenterology 97:927–931

    PubMed  CAS  Google Scholar 

  51. Elia M, Behrens R, Northrop C, Wraight P, Neale G (1987) Evaluation of mannitol, lactulose and 51Cr-labelled ethylenediaminetetraacetate as markers of intestinal permeability in man. Clin Sci 73:197–204

    PubMed  CAS  Google Scholar 

  52. Maxton DG, Bjarnason I, Reynolds AP, Catt SD, Peters TJ, Menzies IS (1986) Lactulose, 51Cr-labelled ethylenediaminetetraacetate, l-rhamnose and polyethylene glycol 400 as probe markers for assessment in vivo of human intestinal permeability. Clin Sci 71:71–80

    PubMed  CAS  Google Scholar 

  53. Chadwick VS, Phillips SF, Hofmann AF (1977) Measurements of intestinal permeability using low molecular weight polyethylene glycols (PEG 400). Gastroenterology 73:247–251

    PubMed  CAS  Google Scholar 

  54. Iriving CS, Lifschitz CH, Marks LM, Nichols BL, Klein PD (1986) Polyethylene glycol polymers of low molecular weight as probes of intestinal permeability, I, Innovations in analysis and quantitation. J Lab Clin Med 107:290–298

    Google Scholar 

  55. Jenkins RT, Ramage JK, Jones DB, Collins SM, Goodacre RL, Hunt RH (1988) Small bowel and colonic permeability to 51Cr-EDTA in patients with active inflammatory bowel disease. Clin Invest Med 11:151–155

    PubMed  CAS  Google Scholar 

  56. Morales J, Kibsey P, Thomas PD, Poznansky MJ, Hamilton S (1992) The effects of ischemia and ischemia-reperfusion on bacterial translocation, lipid peroxidation and gut histology: studies on hemorrhagic shock in pigs. J Trauma 33:221–227

    Article  PubMed  CAS  Google Scholar 

  57. Rush BF, Sori AJ, Murphy TF, Smith S, Flanagan JJ, Machiedo GW (1988) Endotox- aemia and bacteriaemia during hemorrhagic shock. Ann Surg 207:549–554

    Article  PubMed  Google Scholar 

  58. Peitzman AB, Udekwu AO, Ochoa J, Smith S (1991) Bacterial translocation in trauma patients. J Trauma 31:1083–1087

    PubMed  CAS  Google Scholar 

  59. Parks DA, Bulkley GB, Granger DN, Hamilton SR, McCord JM (1982) Ischemic injury in the cat small intestine: role of superoxide radicals. Gastroenterology 82:9–15

    PubMed  CAS  Google Scholar 

  60. Deitch EA, Bridges WR, Baker J et al (1988) Hemorrhagic shock-induced bacterial translocation is reduced by xanthine oxidase inhibition or inactivation. Surgery 104:191–198

    PubMed  CAS  Google Scholar 

  61. Deitch EA, Bridges W, Ma L, Berg R, Specian R, Granger DN (1990) Hemorrhagic shock-induced bacterial translocation: the role of neutrophils and hydroxyl radicals. J Trauma 30:942–952

    Article  PubMed  CAS  Google Scholar 

  62. Deitch EA, Ma L, Ma J-W, Berg RD (1989a) Lethal burn-induced bacterial translocation: role of genetic resistance. J Trauma 29:1480–1487

    Article  PubMed  CAS  Google Scholar 

  63. Vaughan WG, Horton JW, Walker PB (1992) Allopurinol prevents intestinal permeability changes after ischemia-reperfusion injury. J Pediatr Surg 27:968–973

    Article  PubMed  CAS  Google Scholar 

  64. Ziegler TR, Smith RJ, O’Dwyer ST et al (1988) Increased intestinal permeability associated with infection in burn patients. Arch Surg 123:1313–1319

    PubMed  CAS  Google Scholar 

  65. Deitch EA (1990) Intestinal permeability is increased in burn patients shortly after injury. Surgery 107:411–416

    PubMed  CAS  Google Scholar 

  66. Morris SE, Navaratnam N, Townsend CM, Herndon DN (1988) Bacterial translocation and mesenteric blood flow in a large animal model after cutaneous thermal and smoke inhalation injury. Surg Forum 39:189–191

    Google Scholar 

  67. Jones WG, Minei JP, Barber AE et al (1990) Angiotensin converting enzyme inhibition decreases bacterial translocation after burn injury. FASEB J 4: A953

    Google Scholar 

  68. Jones WG, Barber AE, Minei JP, Fahey TJ, Shires GT, Shires GT (1991) Differential pathophysiology of bacterial translocation after thermal injury and sepsis. Ann Surg 14:24–30

    Google Scholar 

  69. Watkins L Jr, Lucas SK, Gardner TJ et al (1979) Angiotensin II levels during cardiopulmonary bypass: a comparison between pulsatile and nonpulsatile flow. Surg Forum 30:229–230

    PubMed  CAS  Google Scholar 

  70. Fiddian-Green RG (1990) Gut mucosal ischemia during cardiac surgery. Semin Thorac Cardiovasc Surg 2:389–399

    PubMed  CAS  Google Scholar 

  71. Farao K, So K, Moroi T et al (1977) Detection of endotoxin in plasma and ascites fluid of patients with cirrhosis. Its clinical significance. Gastroenterology 73:539–542

    Google Scholar 

  72. Bigatello LM, Broitman SA, Fattori L et al (1987) Endotoxemia, encephalopathy and mortality in cirrhotic patients. Am J Gastroenterol 82:11–15

    PubMed  CAS  Google Scholar 

  73. DeGasperi A, DeCian W, Vaiani F et al (1994) Endotoxemia following liver transplantation in humans. Transplant Proc 26:3664–3665

    PubMed  CAS  Google Scholar 

  74. Sorell WT, Quigley EMM, Jin G, Johnson TJ, Rikkers LF (1993) Bacterial translocation in the portal-hypertensive rat: studies in basal conditions and on exposure to hemorrhagic shock. Gastroenterology 104:1722–1726

    PubMed  CAS  Google Scholar 

  75. Yablonski ME, Lifson N (1976) Mechanism of production of intestinal secretion by elevated venous pressure. J Clin Invest 57:904–915

    Article  PubMed  CAS  Google Scholar 

  76. Hamdani R, Chaparala R, Stauber R et al (1995) Intestinal permeability as measured with polyethylene glycol 600 in patients with liver cirrhosis: clinical investigation. Eur J Gastroenterol Hep (submitted)

    Google Scholar 

  77. Ukabam SO, Cooper BT (1984) Small intestinal permeability to mannitol, lactulose and PEG 400 in celiac disease. Dig Dis Sci 29:809–816

    Article  PubMed  CAS  Google Scholar 

  78. Lifschitz CH, Shulman RJ, Langston C, Gopalakrishna GS (1989) Comparison of the d-xylose and polyethylene glycol absorption tests as indicators of mucosal damage in infants with chronic diarrhea. J Pediatr Gastroenterol Nutr 8:47–50

    Article  PubMed  CAS  Google Scholar 

  79. Bjarnason I, Marsh MN, Price A, Levi AJ, Peters TJ (1985) Intestinal permeability in patients with coeliac disease and dermatitis herpetiformis. Gut 26:1214–1219

    Article  PubMed  CAS  Google Scholar 

  80. Ukabam SO, Cooper BT (1985) Small intestinal permeability as an indicator of jejunal mucosal recovery in patients with celiac sprue on a gluten-free diet. J Clin Gastroenterol 7:232–236

    Article  PubMed  CAS  Google Scholar 

  81. May GR, Sutherland LR, Meddings JB (1993) Is small intestinal permeability really increased in relatives of patients with Crohn’s disease? Gastroenterology 104:1627–1632

    PubMed  CAS  Google Scholar 

  82. Bjarnason I, Ward K, Peters TJ (1984) The leaky gut of alcoholism: possible route of entry for toxic compounds. Lancet 28:179–182

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hassanein, T., van Thiel, D.H., Gurakar, A. (1995). Gut Permeability. In: Pinsky, M.R., Dhainaut, JF., Artigas, A. (eds) The Splanchnic Circulation. Update in Intensive Care and Emergency Medicine, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79715-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79715-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79717-0

  • Online ISBN: 978-3-642-79715-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics